
Toward Software-Defined Middlebox Networking

Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, Aditya Akella
University of Wisconsin-Madison, Madison, WI, USA

{agember,pprabhu,zainab,akella}@cs.wisc.edu

ABSTRACT
Current middlebox (MB) management mechanisms are clumsy
and unsuitable for taking full advantage of new MB deploy-
ment models and diverse MB functionality. Instead, we ad-
vocate for mechanisms that help exercise unified control over
the key factors influencing MB operations. Our goal is to re-
alize asoftware-defined MB networkingframework to sim-
plify management of complex, diverse functionalities and
engender rich deployments. We discuss the major challenges
that arise—representing, manipulating, and knowledgeably
controlling MB state—and we present initial thoughts on the
appropriate abstractions and interfaces to address them.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Op-
erations—Network management

General Terms
Design, Management, Standardization

1. INTRODUCTION
Middleboxes (MBs) are a crucial part of many enterprise

LANs, data centers, and clouds, enabling enterprises to en-
sure security, improve performance, and meet other sophisti-
cated goals. MBs fill a unique and important role in the net-
work: unlike networking equipment (e.g., switches), MBs
do more than just routing1, offering a variety of innovative
functions. Yet, MBs are not as general as application servers,
as MBs focus solely on examining and modifying traffic.

Recently, several new trends in MB deployment have arisen.
First, SDN has enabled MBs to be deployed at arbitrary lo-
1Modern switches tend to be powerful enough to also fulfill MB-
like roles, but this is not the equipment’s primary purpose.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12,October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

cations in LANs and data centers [2], no longer limiting
placement to network choke points. In some cases, MBs
can even be implemented within the SDN itself (e.g., chang-
ing IPs/ports like a NAT); although, the lack of support for
more complex MBs, such as those performing deep-packet
modification (e.g., WAN optimizers), means many MBs will
remain separate. Second, while MBs used to be deployed as
physical appliances or dedicated servers, MBs are now be-
ing deployed in a variety of additional forms: as VMs, in
hypervisors, on arbitrary end-hosts [4], and as collections of
processes [9]. Both of these trends lend themselves towards
a more dynamic model of MB deployment, e.g., launching
new MB VMs when network load is high [5].

Several factors influencing MB operations are crucial to
manage in such a dynamic setting. MBs must receive the
correct traffic, e.g., all inbound packets, and be configured
with the correct policies, e.g., firewall accept/drop rules, to
provide the intended enhancements. Additionally, changes
in a deployment, e.g., switching the MB a flow traverses due
to MB scaling, requires careful control over the data main-
tained by MBs’ internal logic, e.g, the state of a TCP connec-
tion, to ensure correct MB behavior. Ignoring one or more
of these aspects could have drastic consequences.

Today, each of these factors influencing the operations
of a dynamic MB deployment—configuration, traffic flow,
and internal data—is managed through ad hoc point mech-
anisms, including by-hand tweaking. This clumsy manage-
ment approach primarily results from the diversity of MBs
in enterprises [9] and the unique configuration and tuning
each requires. Moreover, this approach makes it difficult to
leverage new MB deployment models and diverse MB func-
tionality to enrich application deployments in sophisticated
ways (see examples in§2.1). Mechanisms that help exercise
unified control over all the factors can rectify this key issue.

Currently, no framework for unified control exists. SDN
provides a unified approach to control plane management fo-
cusing mainly on controlling traffic flow [6, 8]. Frameworks
like Stratos [5] address the ordering of MBs and load distri-
bution. However, little progress has been made with regard
to controlling the state—internal data, configured policies,
etc.—associated with MBs (SIMCO [1] is the closest).

Our ultimate goal is to realizean SDN-like framework for

1

MB management. Akin to how SDN has vastly simplified
control plane management and led to a variety of innovative
new applications for network control, asoftware-defined MB
networkingframework that facilitates unified control can sim-
ilarly simplify management of complex, diverse functionali-
ties and engender rich, new applications. The key issues for
MBs, however, are that it is not clear what unified control
entails, to what extent it is possible, and how to achieve it.

In this paper, we examine in depth the issues relating to
a software-defined MB networking framework. We present
several dynamic scenarios, and classify the MB state involved,
to illustrate the major challenges that we believe need to be
addressed:representing, manipulating, and knowledgeably
controlling MB state(§2). We first explore the challenges
in representing MB state, proposing an abstraction based on
the inherent mapping of state to protocol header fields as
a mechanism for dealing with internal, shared, and diverse
state (§3). Next, we discuss the issue of state manipulation,
highlighting the need for a broad interface that enables ma-
nipulation of most MB state while keeping a sufficient level
of control in the hands of MBs themselves; we argue that
a properly detailed event abstraction is a necessary comple-
ment, allowing MBs to expose their internal state changes
and request missing or updated state (§4). Finally, we de-
scribe how specific control logics might utilize these inter-
faces and abstractions to achieve sophisticated control over
MB deployments (§5).

2. BACKGROUND AND CHALLENGES

2.1 Illustrative Examples
We begin by outlining a few scenarios where the need for

unified control of the state associated with MBs is evident:
Virtual Machine (VM) Provisioning. Enterprises have spe-
cific security and performance requirements for each appli-
cation server. Traditionally, when a server is deployed, MBs
are statically configured to meet these requirements. As data
centers become entirely VM-based, server changes occur
more frequently and MB management becomes a major bur-
den. Thus, MB control should happen automatically and in
concert with VM provisioning and migration: instantiating
new server-specific policies, e.g., firewall rules; migrating
MB state to ensure consistent, correct examination and mod-
ification of server traffic; verifying existing MB policies will
not conflict with server requirements.
MB Scaling. The traffic load imposed on MBs will change
over time, especially in cloud environments, motivating dy-
namic provisioning of MBs. While instantiating the neces-
sary compute resources and network forwarding paths is im-
portant [5], ensuring proper handling of MB state is also cru-
cial. MB state must be controlled at fine granularity2 to al-
low rebalancing of load during scale up—e.g., policies must

2Wrapping each MB, and its state, in a VM limits our choice of
deployment models and the extent to which scaling is beneficial.

Middlebox State
Firewall Rules; Connection records{IP-tuple, seq #s, status}
NAT Mappings {timer, internal IP-tuple, external IP-tuple};

Port forwarding rules; Timer duration; External address
Load
Balancer

Mappings {timer, destination, IP-tuple}; Destinations;
Balancing algorithm; Load measurements; Granularity

Redundancy
Elimination

Chunk cache; Fingerprinting algorithm; Cache size; Re-
placement policy

Intrusion
Prevention

Connection records{timer, IP-tuple, status, payloads, seq
#}; Rules; Pattern-matching algorithm; Alert level

Table 1: State associated with several common types of MBs
(IP-tupleincludes addresses, ports, and protocol)

be replicated or split—and merging of MBs during scale
down—e.g., per-flow state must be aggregated.
Live Network Migration. The virtualization of compute re-
sources and networks, along with new MB deployment mod-
els, makes live migration of an entire application deployment
possible. Such migrations require seamless MB operations
and consistent MB performance throughout the migration
(e.g., from a private data center to a public cloud). Some mi-
grations may necessitate complex MB changes: e.g., a phys-
ical MB appliance may be split into several MB VMs or the
entire network topology may change. These all require care-
fully dividing and migrating MB policies and internal data
at the right time and between the right MBs.

Current ad hoc point mechanisms for managing dynamic
MB deployments make supporting these scenarios complex
and, in some cases, impossible. Moreover, deep, flexible
control of layer 3-7 network services is a crucial component
of an entirely software-defined data center.

2.2 Classification of MB state
Before delving further into the problem of unified control,

we describe MB state in more depth.
MBs rely on complex and diverse state for proper oper-

ation. A single MB may receive dozens of “configuration”
inputs, and its internal logic may maintain detailed records
for thousands of flows. Moreover, the state a MB requires
for operation varies significantly across MB types (and ven-
dors), as shown in Table 1. In contrast, a network depends
only on the forwarding information bases (FIBs) for proper
traffic forwarding, which, in SDNs, is created and managed
by a controller running SDN applications. Note that MB
state will continue to increase in diversity and complexityas
new MB functionality emerges and competing MB vendors
try to specialize their offerings.

Pieces of MB state can be classified along several possible
dimensions—source, structure, fluidity, etc.—but we believe
the most salient classification is based on the role the state
plays in a MB’s operation. Accordingly, we divide MB state
into four classes, listed and defined in Table 2. Each class
of state has severalproperties: Some MB state is provided
asexternal“configuration” input, while other state is created
and manipulated by a MB’sinternal logic during operation.
Some MB state pertains tospecific flows3, while other state
3Flow may refer to a transport connection, an application session,
a source/destination pair, or any another traffic subset.

2

is sharedby all, or an unknown subset of, traffic. Finally,
for a specific type of MB, some classes of state havemany
possible structures and meanings while others havefew.

We argue that it is crucial, and possible, to control two
of the four classes—actionandsupporting—since both are
critical to a MB’s operation; hereafterMB staterefers to
these two classes. We don’t consider designing control over
tuning state because: (i) A MB could rely on a default or
simpler form of tuning state—albeit at the cost of efficiency
and performance—and still perform its basic operations cor-
rectly. (ii) Tuning state tends to be more fine-grained, vendor-
specific (i.e., has many forms), and consistent over long time-
scales, making it more appropriate to manage this state out-
of-band. Similarly, we eschewmonitoringstate because it’s
primarily intended for observing and tweaking MB behavior.

2.3 Three Challenges
Given an understanding of what is amenable to unified

control, we argue that there are three major challenges that
must be addressed in achieving this control and moving to-
wards a model of software-defined MB networking.

1. How do you view and interpret MB state?
2. How do you manipulate what state exists and where?
3. How do you make informed state control decisions?

While these challenges are similar to those faced by SDN,
addressing these challenges for MBs is harder due to the di-
versity and complexity of MBs. We discuss these issues in
more depth in the sections that follow, and we present ini-
tial thoughts on the appropriate abstractions and interfaces
that help address them. Additional challenges that require
further research are discussed in§7.

3. STATE REPRESENTATION
We believe that viewing and interpreting MB state is one

of the foremost issues in unified control: we need to know
whatwe are controllingbeforewe try to control it. However,
there are several challenges in doing so:

• Some state is established and manipulated by a MB’s
internal control logic, causing the structure of this state
to only be known to the MBs themselves. Such con-
cealment arises from both vendors’ desire to protect
intellectual property and the disregard for this state in
ad hoc MB management.

• Some state is shared by all (or an unknown subset of)
flows and impacts the MB’s operations on all of these
flows. This conflicts with the per-flow operations com-
mon in applications and the network.

• There is high diversity in the structure and semantics of
state across several types of MBs. This diversity leads
to complexity if not properly contained.

We believe these challenges can be addressed by exposing
the right abstraction for viewing and interpreting MB state.
The abstraction should hide the intricacies of individual MB

Source Destination Proto Other Action
10.10.0.0/16 * TCP dport 22 ACCEPT
* 10.20.1.0/24 TCP dport 80 ACCEPT
* * TCP state ESTABLISHED ACCEPT

(a) Rules (Action)

SrcIP DstIP Proto SPort DPort State
10.10.54.51 10.20.1.23 TCP 12983 22 ESTABLISHED
10.10.12.37 192.168.0.2 TCP 25483 22 SYN RCVD
192.168.0.1 10.20.1.73 TCP 52342 80 ESTABLISHED

(b) Connection Records (Supporting)

Table 3: Action and supporting state for a firewall

offerings while still allowing for specialization betweenMB
types and vendors.

Fortunately, an inherent commonality exists in the oper-
ations of many MBs that can aid the formation of such an
abstraction: many MB operations are a function of the val-
ues in packet headers. For example, a stateful firewall cre-
ates and updates connection records for each flow based on
the values in the network- and transport-layer headers of re-
ceived packets (Table 3b). Likewise, the decision to accept
or drop a packet is based on these header values4 (Table 3a).
These are akin to SDN’s use of protocol header fields to de-
fine forwarding behaviors.

3.1 View Abstraction
We propose an abstraction that leverages thisinherent map-

ping of state to protocol header valuesto provide a myopic
view of the complex and detailed state associated with a
MB. The view abstraction (Figure 1) uses pertinent proto-
col header fields as akey for each distinct chunk ofaction
and/orsupportingstate. Figures 2 and 3 show examples of
state encoded using this abstraction.

The key is carefully constructed to identify exactly the
traffic subsets to which a piece of state applies. A basic 5-
tuple (source/destination network addresses, transport pro-
tocol, and source/destination transport ports) is a sufficient
key for most state, but the protocol fields that form the key
are flexible. Defining keys in this way enables us to leverage
the ubiquity of common protocols to counteract MB diver-
sity. Moreover, it provides an inherent hierarchy (e.g., IP
addresses are hierarchical by design) for identifying subsets
and supersets of state.

Action stateis more challenging to represent because of
its intrinsic tie to MBs’ internal logic. For example, ac-
tion state for firewalls is accept/drop rules, while action state
for NATs is a mapping from public addresses/ports to pri-
vate addresses/ports. We could represent action state as a
binary blob. However, this would make creation and ma-
nipulation of action state complex because of the need for
a deep understanding of MB semantics for the target MB.
Instead, we propose to represent action state as atransfor-
mation functionthat changes specific packet header fields to

4Along with extra values calculated or inferred by the MB, e.g.,
TCP connection state.

3

Class Definition Intrusion Prevention
(IPS) Example

Internal/
External

Shared/
Per-Flow

Many/
Few Forms

Should
Manage

Action Defines operations to apply to packets/flows Rules Both ? Few Yes
Supporting Helps decide between multiple possible actions Connection Records Internal Both Many Yes
Tuning Tunes MB algorithms for performance, efficiency, etc. Alert level External Shared Many No
Monitoring Quantifies MB operations Packet counters Internal Both Many No

Table 2: Classes of MB state, and its properties

Figure 1: Abstract view of MB state

new constants (or discards the packet). This more generic
representation can encode most of the actions of firewalls,
NATs, load balancers, and (partially) IPSs, which are among
the most common MBs [9]. MBs with different operational
semantics require alternative representations of action state,
which we leave for future investigation.

Supporting stateis always represented as abinary blob,
since its structure depends on a MB’s deep internal logic.
In special cases, where the structure of the binary blob is
known, the blob may be analyzed by logic external to the
MB, but the blob should never be changed by external logic
to avoid inducing unintended MB behavior.

Note that by basing our view abstraction primarily on pro-
tocol header fields, we provide a mechanism for encoding
only per-flow MB state. Shared MB state is much more chal-
lenging to represent because it is unclear how this state might
be controlled. For example, the cache on a redundancy elim-
ination (RE) MB is shared across all flows and synchronized
between source and destination RE MBs; it is unclear how
an RE MB’s cache should be changed to ensure redundancy
is correctly removed and restored when a flow is re-routed
through a different RE MB. Therefore, our current state ab-
straction exposesall shared state as a single binary blob.
Takeaways.The internal or shared nature of some MB state
makes representing MB state challenging. A view abstrac-
tion provides a uniform and well-structured representation
of diverse MB state for the purposes of examining, defin-
ing, and facilitating migration of data that influences MBs’
behavior. It does not entirely solve the challenge of how to
manipulate what MB state exists and where; we address this
challenge in the next section.

4. STATE MANIPULATION
Influencing a MB’s behavior requires manipulating the

state residing at the MB.5 Today, this manipulation can only
occur through narrow, MB-specific configuration interfaces.
Moreover, these interfaces exclude significant subsets of state
that are established and leveraged by the MB’s internal logic.
This limited interface severely constrains the flexibilityand
potential sophistication of a MB deployment: e.g., a flow’s
packets must traverse the same IPS for the duration of the

5A MBs’s behavior can also be influenced through changes in its
internal logic, but we assume this is fixed.

flow because a record of the connection, required for proper
attack detection, cannot be moved between IPSs. We argue
that MBs should expose a broad state manipulation interface,
complementary to our view abstraction. Unfortunately, this
is complicated by several factors:

• Manipulation of some MB state is at the discretion of
the MBs themselves: e.g., an IPS may establish a drop
rule for flows believed to be malicious. This contrasts
with SDNs where all state6 is established and manipu-
lated by the SDN controller.

• The state manipulation required to achieve a desired
MB behavior varies significantly by MB type, and in
some cases the objective behind the manipulation: e.g.,
scaling a firewall requires an interface for migrating
connection records from an existing firewall and in-
stalling rules to apply to packets; scaling a load bal-
ancer requires transferring a partial list of potential des-
tination servers. This is in contrast to SDNs, where
state manipulation is restricted to forwarding entries.

These factors highlight the importance of carefully harmo-
nizing a MB’s internal manipulation and use of state with
the external interfaces provided for state manipulation.

One extreme point in the design space is to create and
modify all MB state externally. With this approach, the bulk
of MBs’ internal logics are reimplemented by a controller
application, and MBs become nothing more than “dumb”
packet modifiers, akin to SDN switches being “dumb” packet
forwarders. While this very SDN-like approach provides
significant flexibility, we believe itremoves too much control
from the MBs themselves, therebyconstraininginnovation.

Instead, we believe that state manipulation interfaces on
MBs should be multi-faceted. First, MBs should expose
a generic interface, which builds on our view abstraction,
for externally accessing and updating diverse pieces of state.
Second, MBs should announce internal state changes and be
able to request external state changes. We present our ini-
tial thoughts on these interfaces in this section. Decisions
on what the state should contain, when it should be changed,
and where it should reside are best addressed by scenario-
specific control logic (§5) which leverages these interfaces.

4.1 Operations
We propose a broad, generic interface, complementary to

our view abstraction, for manipulating the state residing at
MBs. A broad interface accommodates MB diversity and
sophisticated MB control without introducing undue com-
plexity. In contrast, narrow, state-specific interfaces, e.g., a
6With the exception of state like flow counters and timers.

4

Figure 2:getoperation applied to firewall

Source Destination Proto Other Action
* 10.20.1.0/24 TCP * DROP

Figure 3:addoperation applied to firewall

firewall with one interface for updating rules and another for
changing connection records, provide none of these benefits.

We believe three basic operations are sufficient:
• get(filter, MB) – Obtains from a MB all chunks of state

whose key matches the filter and encodes the state us-
ing our view abstraction. Figure 2 shows an example
get operation applied to the firewall state depicted in
Table 3. One firewall rule applies to all traffic match-
ing the filter, so one piece of action state is returned;
one matching connection record is also returned.

• add(state, MB) – Adds a chunk of state, encoded us-
ing our view abstraction, to the MB. Figure 3 shows an
exampleaddoperation that instantiates a firewall rule
to drop traffic for a specific subnet.

• remove(filter, MB) – Removes from the MB all chunks
of state whose key matches the filter.

A downside of these operations is their failure to com-
municate what types of state are available and required at
a specific MB. For example, if a get operation applied to a
firewall returns no action state, the control logic must know
that some state (i.e., a rule) must be added for proper MB
operation; in contrast, a NAT will automatically create an
address/port mapping for new flows, so state need not pre-
exist. This issue does not arise in SDNs because the state
required is always the same: a matching forwarding entry
for each flow traversing a switch.

An additional downside of this generic interface is thepo-
tential for invalid manipulationsof MB state. For exam-
ple, an outdated connection record could be obtained from
one IPS and added to another; the second IPS will operate
under the assumption that the connection record accurately
portrays the full connection history, which it does not, allow-
ing attacks to occur undetected. Methods for detecting such
invalid state manipulations requires further research.

MBs’ internal logic must be carefully enhanced to support
the state manipulation operations proposed above without
introducing consistency or performance issues. Add/remove
operations may require manipulated, or related, state to be
merged, split, or transformed in some other complex way.
At a minimum, MBs need additional logic to translate be-
tween our view abstraction and their own internal structures.

4.2 Events
We believe that the operations discussed above must be

complemented by anevent abstractionto guide external state
manipulation. This abstraction should expose the two types
of interactions that occur between a MB’s internal logic and
state: (i) the MB’s internal logic establishes or manipulates
state at the MB; or (ii) the MB’s internal logic reaches an
operation that requires a piece of state. In SDNs, only the
latter form of interaction occurs at network elements and is
exposed via events.

The same diversity issues that plague the abstractions dis-
cussed thus far also make an event abstraction challenging
to design. In SDNs, a few common events are raised by all
networking equipment; MBs, in contrast, are highly special-
ized. We borrow ideas from our view abstraction (§3.1) and
define thescopeof an event based on protocol header fields.
However, the structure used to convey the type, parameters,
and semantics of an event requires further research.

One of the most difficult aspects in designing an event
abstraction is exposing the right level of introspection into
MBs’ operations. Several distinct events could be raised
during the processing of even a single packet: e.g., received
first packet of flow, created connection record, updated state
of TCP connection, etc. Exposing all these events could
quickly overwhelm a controller. Moreover, only a subset
of these events may be required in any given scenario. At
the same time, exposing too few of the events could result
in missing a crucial control operation: e.g., not knowing a
TCP connection has been reset may result in unnecessary
pinholes rules remaining on a downstream firewall.
Takeaways. MBs should expose a broad interface for ma-
nipulating both internally and externally constructed MB state.
A few basic operations are sufficient, but MBs must be en-
hanced to support these operations without introducing con-
sistency, performance, or state validity problems. Event ab-
stractions serve as a necessary complement, exposing MB’s
internal state manipulations and allowing MBs to request
missing or updated state. Operations performed in response
to events are determined by the control logic, discussed next.

5. CONTROL LOGIC
Sophisticated control logics can be run atop the abstrac-

tions and interfaces discussed in the previous sections to re-
alize rich control over dynamic MB deployments. In this
section, we discuss the design of control logics for the first
two scenarios presented in§2.1. These example control log-
ics illustrate how our proposed mechanisms fit together and
highlights the challenges that emerge in control logic design.
VM Provisioning. When a new VM is provisioned, the con-
trol logic holds the responsibility for identifying the MBsthe
VM’s traffic should traverse and instantiating the required
state on these MBs. This is similar to the common SDN con-
trol task of identifying switches and installing forwarding
state to establish a path through the network. However, the
task is more complex because MBs’ capabilities and state are

5

not uniform. The control logic requires anaugmented net-
work graph, akin to those maintained by SDNs, with special
MB nodes that identify each MB’s capabilities (e.g., using a
MB-specific modeling language [6]) and current state. The
control logic must search this graph to identify MBs pro-
viding the necessary functionality, and select specific MBs
based on location (e.g., select a firewall close to the server
to minimize the potential for insider attacks), the presence
of existing state (e.g., use the load balancer already used by
related VMs), and other factors.

Appropriate action state must be established at each of
the selected MBs to achieve the security and performance an
enterprise requires. A get operation can be used to determine
if the required state already exists, e.g., because a similar
VM is already using the MB. New state can be instantiated,
when necessary, by defining a transformation function using
the view abstraction and installing the state using the add
operation. It is imperative that the state added to each MB
considers the modifications made by other MBs the VM’s
traffic passes through: e.g., if the VM’s traffic passes through
a firewall and then a load balancer, the state added to the
firewall must contain the IP address of the load balancer, not
the IP of the VM. In some cases, the action state may not
be known a priori: e.g., if outbound application flows pass
through a NAT followed by a firewall, the necessary firewall
pinholes are dependent on the port mapping selected by the
NAT. In this case, the control logic can monitor for events
raised by the NAT, e.g., indicating a new port mapping has
been established, and subsequently add the corresponding
state to the firewall.

Finally, to ensure traffic passes through the chosen MB
sequence, the control logic (or an SDN controller) must in-
stall the appropriate forwarding rules in network switches.
Again, careful attention must be paid to the manipulations
MBs perform to ensure the right traffic is forwarded.
MB Scaling. The control logic for MB scaling is more com-
plex because of the need tomigrate state between MBs.
When a MB is scaled down, all supporting state for active
flows traversing that MB (MB E) must be moved to the re-
maining MBs (MB R) using get and add operations. The
flows cannot be switched to traverseMB Runtil the state is
moved. Care must be taken to ensure consistency: e.g., if a
new packet for an active flow arrives (signaled by an event)
at MB E after the flow’s state has been moved, the packet
must either be forwarded toMB R or the state fromMB E
must be moved again.

Similar design patterns and challenges arise in control ap-
plications developed for other scenarios.

6. RELATED WORK
Prior works have sought to provide specific forms of con-

trol over MBs. Sekar et. al present optimization formula-
tions for dividing intrusion detection responsibilities based
on traffic paths and IPS processing capabilities [10]. PLayer [7]
passes traffic through specific MBs based on high-level poli-

cies. Both of these could be implemented as specific con-
trol logics in our framework. SIMCO [1], a protocol for dy-
namic configuration of NATs and firewalls, has goals similar
to ours but only offers minimal control.

New MB deployment models, e.g. CoMB [9] and ETTM [4],
are orthogonal to our framework’s design, but unified control
enables them to be better leveraged.

Our framework is grounded in the principles of SDN, which
has a rich body of work ranging from specific control frame-
works [2, 8] to high-level concepts [3].

7. CONCLUSION
Enriching enterprise application deployments in sophisti-

cated ways requires taking full advantage of new MB de-
ployment models and diverse MB functionality. Current ad
hoc mechanisms for MB control, including by-hand tweak-
ing, are clumsy and unsuitable for this task. Instead, we
have advocated for the design of asoftware-defined MB net-
working frameworkcapable of supporting scenarios like MB
scaling and live network migration. We have examined in
depth the major challenges in moving towards this control
model—representing, manipulating, and knowledgeably con-
trolling MB state—and presented our initial thoughts on the
appropriate abstraction and interfaces to help address them.

Moving closer towards our goal of flexible, unified control
requires further research into many additional issues, such
as: representing the state associated with a broader range of
MBs using well defined primitives, standardizing the rep-
resentation of MB events, facilitating deep control of MB
functionality, preventing invalid manipulations of MB state
and ensuring consistency, augmenting MBs’ internal logic to
facilitate adequate manipulation of shared state, and design-
ing control logics for a wide range of scenarios. More impor-
tantly, we believe that continued innovation in MB function-
ality and operation hinges on the development of SDN-like
frameworks for MB management.

8. REFERENCES
[1] Rfc 4540: Nec’s simple middlebox configuration (simco) protocol version 3.0.

http://tools.ietf.org/html/rfc4540.
[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: taking control of the enterprise. InSIGCOMM, 2007.
[3] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtualizing the

network forwarding plane. InPRESTO, 2010.
[4] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and

A. Krishnamurthy. Ettm: A scalable fault tolerant network manager. InNSDI,
2011.

[5] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos: Virtual
middleboxes as first-class entities. Technical Report TR1771, University of
Wisconsin-Madison, 2012.

[6] D. Joseph and I. Stoica. Modeling middleboxes.IEEE Network, 2008.
[7] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for

data centers. InSIGCOMM, 2008.
[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation in
campus networks.ACM SIGCOMM CCR, 38(2), 2008.

[9] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture.In NSDI, 2012.

[10] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter. Network-wide
deployment of intrusion detection and prevention systems.In CoNEXT, 2010.

6

