OpenNF: Enabling Innovation in Network Function Control

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella
University of Wisconsin-Madison
{agember,raajay,cprakash,rgrandl,junaid,souravd,akella}@cs.wisc.edu
http://opennf.cs.w sc. edu

ABSTRACT

Network functions virtualization (NFV) together with sofire-
defined networking (SDN) has the potential to help operatats

isfy tight service level agreements, accurately monitaf manipu-

late network traffic, and minimize operating expenses. Hewen
scenarios that require packet processing to be redistdbatross

a collection of network function (NF) instances, simultangly
achieving all three goals requires a framework that pravieli-
cient, coordinated control of both internal NF state andvoet
forwarding state. To this end, we design a control planesdall
OpenNF. We use carefully designed APIs and a clever combina-
tion of events and forwarding updates to address race d¢onsljt
bound overhead, and accommodate a variety of NFs. Our evalua
tion shows that OpenNF offers efficient state control withmam-
promising flexibility, and requires modest additions to NFs

1. INTRODUCTION

Network functions (NFs), or middleboxes, are systems tkat e
amine and modify packets and flows in sophisticated ways; e.g
intrusion detection systems (IDSs), load balancers, ogcpiox-
ies, etc. NFs play a critical role in ensuring security, ioydng
performance, and providing other novel network functidp§88].

Recently, we have seen a growing interest in replacing déstic
NF hardware with software-based NFs running on generic com-
pute resources—a trend known as network functions vizagbtn
(NFV) [14]. In parallel, software-defined networking (SDiN)e-
ing used to steer flows through appropriate NFs to enfordeipsl
and jointly manage network and NF load [19, 22, 24, 27, 33].

Together, NFV and SDN can enable an important class of man-
agement applications that needdynamically redistribute packet
processing across multiple instances of an-Né&.g., NF load bal-
ancing [33] and elastic NF scaling [23]. In the context oftsap-
plications, “NFV + SDN” can help achieve three importantigoa
(1) satisfy tight service level agreements (SLAs) on NF perfor
mance or availability; Z) accurately monitor and manipulate net-
work traffic, e.g., an IDS should raise alerts &lrflows containing
known malware; and3) minimize NF operating costs. However,
simultaneously achieving all three goals is not possibiaypand
fundamentally requires more control than NFV + SDN can offer

of SLA violations. NF accuracy may also be impacted due toesom
NF-internal state not being copied or shared.

In this example, the only way to avoid a trade-off between bH-a
curacy and performance is to allow a control applicatioguikly
and safely move the internal IDS state for some flfvars the orig-
inal instance to the new instance, amgdate network forwarding
state alongsideSimilar needs arise in the context of other applica-
tions that rely on dynamic reallocation of packet procagsmg.,
rapid NF upgrades and dynamic invocation of remote proogssi

In this paper, we present OpenNF, a control plane architectu
thatprovides efficient, coordinated control of both internal tkte
and network forwarding stat® allow quick, safe, and fine-grained
reallocation of flows across NF instances. Using OpenNF;aepe
tors can create rich control applications that redistelprocessing
to optimally meet their performance, availability, setpiend cost
objectives, thus avoiding the need to make undesirable-toéd.

We address three major challenges in designing OpenNF:

C1: Addressing race conditions.This is the most basic issue that
arises when reallocating in-progress flows: When someriat®F
state is being moved, packets may arrive at the source oestdter
the move starts, or at the destination instance before dlte tsans-
fer finishes. Unless care is taken, updates to NF state dueho s
packets may either be lost or happen out of order, violatiogen
safety. Similarly, when state is copied across NF instangafates
occurring contemporaneously may cause state to becomesiseo
tent. Depending on the NF, these issues may hurt its accuracy

To account for race conditions, we introduce two novel con-
structs: (1) an event abstraction to externally observepradent
local state changes inside NFs, and (2) a clever two-phémsrse
for updating network forwarding state. We show how to corabin
the two to provably ensure state updates are not lost or eszald
during state moves and shared state remains consistent.

C2: Bounding overhead. The second issue is ensuring that real-
location can be efficient. Moving and sharing state betweleinN
stances consumes both NF CPU and network resources. Moreove
avoiding loss, reordering, and state inconsistency requiacket
buffering, which introduces both latency and memory ovadhdf
these performance and resource overheads are unbouneledyeh
cannot satisfy tight SLAs or constrain operating costs.

To bound overhead, we propose a flexibt@thbound APkhat

To see why, consider a scenario where an IDS is overloaded andcontrol applications use tpreciselyspecify which state to move,

must be scaled out in order to satisfy SLAs on throughput-(Fig
ure 1). With NFV we can easily launch a new IDS instance, and
with SDN we can reroute some in-progress flows to the new in-
stance [19, 33]. However, attacks may go undetected bet¢hese
necessary internal NF state is unavailable at the new iostafo
overcome this problem, an SDN control application can waiit f
existing flows to terminate and only reroute new flows [24, 88}

this delays the mitigation of overload and increases thaitikod

copy, or share, and which guarantees to enforce (e.g.frlesk-
C3: Accommodating a variety of NFs with minimal changes.
The final issue is ensuring that our framework is capable cbime
modating a wide range of NFs in a largely non-intrusive fashi
Providing APIs for NFs to create/update state [35] is one@gugh,
but it restricts how internal NF state is structured and matyar-
commodate the state allocation/access needs of some gaoket

SDN Switch %HZ
o0 o3 —pe
H1ConnCount=1 H1ConnCount=1
Src=H1,Dst=H2, Src=H1,Dst=H3,
TCP Analyzer, IDS1 |ps2 TCP Analyzer,
HTTP Analyzer .) 4 HTTP Analyzer

Figure 1: A scenario requiring scale-out and load balancingto sat-
isfy SLAs on throughput are and minimize operating expenses The
IDS [32] processes a copy of network traffic to detect port sg&s and
malware in HTTP flows. For each active flow, the IDS maintains a
connection object with src/dst IPs, ports, etc. and severanalyzer ob-
jects with protocol-specific state (e.g., current TCP seq #rqartially
reassembled HTTP payloads). It also maintains host-spedificonnec-
tion counters. If the red (darker) flow is reassigned to the seond IDS
instance to avoid SLA violations, then the SDN switch’s flowable must
be updated, the flow-specific state must be moved, and the hespecific
state must be copied or shared to ensure no attacks go undeted.

cessing logic. Instead, we design a noselithbound APfor NFs
that allows a controller to request the export or import of $idte
without changing how NFs internally manage state.

We have implemented our northbound API using Floodlight [7]
and we have constructed several control applications tathis
API. We have also augmented four NFs—Bro [32], Squid [17}, ip
ables [10], and PRADS [15]—to support our southbound AP).(87

Our evaluation of OpenNF shows that: (1) OpenNF can elim-
inate spurious alerts and cut NF scale-in time by tens of fagu
compared to using current control frameworks; (2) state lman
moved, copied, and shared efficiently even when certainaguar
tees are requested—e.g., a loss-free move involving stat&00
flows takes only 215ms and imposes only 50ms of additional la-
tency on packets received during the operation; and (3)tiaddi
to NFs to support OpenNF's southbound APl increase codégize
at most 9.8%, and packet processing time at NFs increasessy |
than 6% during state export or import.

2. WHY OpenNF?

When packet processing is being collectively handled bytimul
ple instances of an NF, the NF deployment as a whole must typi-
cally meet three important goals: (1) satisfy tight NF sesvievel
agreements (SLAs) on performance or availability—e.gyregate
throughput should exceed 1Gbps most of the time, and thedtie
dated/unpatched NFs are used to process flows should bédess t
10 minutes per year; (2) accurately monitor and manipulate n
work traffic—e.g., an IDS should raise alerts fat HTTP flows
containing known malware packages, and a redundancy eimin
tion (RE) decoder should correctly restore redundancy vechby
an RE encoder; and (3) operate with minimal cost—e.g., ressu
are shutdown when the extra capacity is not needed.

Simultaneously achieving all three goals is not possibtiayo
In particular, we need additional control mechanisms, heytbhose
offered by combining NFV [14] and SDN [30]. Below, we deserib
several concrete examples and highlight how the aforeioreedi
triumvirate of goals translate into control plane requieents. We
also discuss how current NFV and SDN control frameworks, and
simplistic enhancements to them, fall short in satisfyhese needs.

2.1 Motivating Examples

Always up-to-date NFs.For maximum security, a cellular provider
may want traffic to always be processed by the latest NF sodtwa
For example, an SLA may require that traffic is never proatbye
outdated NF instances for more than 10 minutes per year #d9al

Fortunately, NFV allows us to launch an updated instanceniaia
ter of milliseconds [29], and SDN allows us to reroute tratffithat
instance just as quickly [19, 33]. However, this simple uirmy of
traffic can compromise NF accuracy (goal #2) due to the alesainc
internal NF state at the new instance: e.g., rerouting @¢tivTP
flows to a new IDS instance can cause the IDS to miss detecting
some malware due to the lack of metadata for earlier packets i
the flows. To overcome this issue, we can wait for existing $low
to terminate and only reroute new flows [24, 39]. Howevergcsin
flow durations are unbounded, this approach cannot guaraimee
SLA will be satisfied: e.g., up to 40% of flows in cellular netk®
last longer than 10 minutes [37]The only way to both satisfy the
SLA and maintain NF accuracy is for the control plane to offfer
ability to move NF state alongside updates to network forwarding
state Furthermore, theperation must complete in bounded time
To guarantee NF accuracy (goal #2) during and after state-tra
fer, it may be important that no packets or updates to statéoat
and no re-ordering of updates happens. For example, ID&oss
operating on a copy of traffic have no opportunity to request a
packet retransmission if the copied traffic is dropped dystate
move; this can lead to missed alerts because only part ofatee d
sent over a connection is checked for malwatgkewise, the IDS
may raise false alerts if it receives and processes SYN atad da
packets out of order. Thus, the control plamest offer support
for key guarantees such as loss-freedom and order preseovat
(We formally defindoss-freedonandorder-preservatiornn 85.1.)
High performance network monitoring. Performance is also a
crucial concern for cellular providers. For example, an Shay
require NF deployment throughput to exceed 1Gbps most of the
time. Meeting this SLA with a single NF instance can be chal-
lenging due to the complexity of packet processing. Fotelga
NFV enables NFs to be dynamically scaled-out as networkilvad
creases, and SDN enables flows to be rerouted to leveragewhe n
capacity. However, as in the first scenario, flows must beutetb
quickly—waiting for flows to terminate can cause NF overload to
persist and violate the SLA (goal #1)—asafely—rerouting flows
without moving internal NF state (in a loss-free and ordexspr-
ving manner) can compromise NF accuracy (goal #2). Sirgjlarl
when network load decreases the NF should be scaled-in, with
flows rerouted quickly and safely beforehand, to minimizerep
ating costs (goal #3). To achieve this, we again need th&yatuil
move NF state alongside updates to network forwarding ,shatg
the move must occur within bounded time and with key guaemte
When rebalancing load, we must also account for the fact that
NFs may depend on state that applies to more than one flow: e.g.
an IDS maintains connection counters for each end-hostafffa
is balanced at the granularity of hosts or subnets, all flawsaf
host will traverse the same IDS instance, and the counterbea
moved to that instance. However, when flows involving theeam
host are balanced to different instances, both instancas$ nawe
the relevant counters. Furthermore, if one instance is tateni-
nated and flows for a given host are re-routed to the same m@rgai
instance, the counters from both instances should be mefhed,
the control plane must offer the ability move, copy or share, and
combine NF state that applies to multiple flows
Fast failure recovery with low resource footprint. When an NF
instance fails, we can minimize downtime (goal #1) by reiraut

!Prematurely terminating flows also violates SLAs.

2Is loss-free important given the network already can dropoia
ets? Note that end points recover from network-induced drops us-
ing retransmissions, and the IDS can eventually get a copy; b
the IDS can never recover packets dropped during stateerais
similar argument applies to order-preserving.

in-progress (and new) flows to a non-failed instance. Fosehe
flows to be accurately processed (goal #2), critical NF staist
be available at the selected instance. One way to fulfil #hi®i
periodically create a backup of all NF state; this consun@s n
negligible CPU and memory bandwidth at the NF (violatinglgoa
#3), and the delay between copies will result in the backugain-
ing significant amounts of stale state. A second approachdam.
to back up pieces of NF state as they are updated. This eliesina
the stale state problem, and the resource footprint is ptiopal to
the frequency of state updates and the amount of state bedkgt
up. To support this, we need the ability to copy NF state, dsage
the ability totrack when/how state is updated

Selectively invoking advanced remote processin@®ased on pre-
liminary observations made by a local NF, an enterprise maytw
to employ deeper and more advanced processing of a subset of i
progress flows (variant of goal #2). For example, when an 1IBS d
tects that internal hosts are making HTTP requests for &lidéed
domain, the enterprise invokes additional packet pronggsihave
the corresponding replies analyzed for malware. Due totédichi
resources at the local IDS instance, the enterprise mayagee
a more powerful remote cloud-resident IDS. Further, to Gibe
cost of redirecting all traffic to the cloud (goal #3), traffrom
the remaining hosts should continue to be processed locEtlis
requires the support highlighted in earlier examples (@xgving
flow-specific state with a loss-free guarantee). Additinahore
advanced processing typically requires maintaining metaikd
state: e.g., the cloud-resident IDS may create additiciaéd $or

the new flows to compare signatures to a large corpus of known

attacks. Thus, the NF control plaséould not restrict an NF's
ability to create additional stateFurther,it should automatically
capture this additional statéf the processing of the flow is later
transferred back to the original NF instance.

2.2 Related Work

Existing NF control planes such as PLayer [27], SIMPLE [33],
Stratos [23], FlowTags [22], and connection acrobaticg {81y
provide control over, and coordination of, traffic forwargi As
already discussed, forwarding changes alone are insulficiesat-
isfy multiple objectives without degrading NF accuracy.

VM [20] or process replication [6] only allows cloning of NR-i
stances in their entirety. The additional, unneeded stataded in
a clone not only wastes memory, but more crucially can canse u
desirable NF behavior: e.g., an IDS may generate falsesgleg
quantify this in 88.4). Moreover, this approach preveraesfrom
multiple NF instances from being moved and merged, prectydi
e.g., fast elastic scale-dowirBecause of their intrinsic limitations,
combining existing control planes with techniques for VMgnai-
tion/process replication does not address the above sgaitts.

Vendor-supplied controllers [5, 16] that move, copy, andreh
NF state between multiple NF instances can leverage kngeled
about the internal workings of NFs. However, they cannotrbn
network state in a way that fully satisfies all goals—e.gis hard
to provide optimized load balancing across network links.

Split/Merge [35] and Pico Replication [34] are the only gyss
that provide some control over both internal NF state and/owt
state. They provide a shared library that NFs use to createsa,
and modify internal state through pre-defined APIs. In 8ykrge,
an orchestrator is responsible for coordinating load lzateyby in-
voking a simplemigrate (f)operation that reroutes flofand moves
corresponding NF state. In Pico Replication, modules atdeddo

3Basic scale-down can be supported by assigning new flowsto th
“combined” instance and waiting for flows at the “old” instanto
terminate; but this can take a long time.

[Control Application |
Northbound API / %
¥ OpenNF Controller y
[NF State Manager —| Flow Manager |
I I I I

v Southbound APl ¥ J_ 4
[
Switches @

NFs
Figure 2: OpenNF architecture

an NF to manage the flow of packets in and out of each instance
and to clone states at policy-defined frequencies.

Unfortunately, the migrate operation can cause lost ordered
NF state updates, since packets arriving at an NF instariee af
migrate is initiated are dropped, and a race exists betwegglgiag
the network forwarding state update and resuming the flovaéffa
(which is halted when migrate starts). Furthermore, théestra-
tor and NF modules are targeted to specific problems, makim t
ill-suited to support other complex control applicatiokrgally, the
API NFs must use to create and access states uses nondksgsipt
for non-flow-based state, making it difficult to know the edstates
to move and copy when flows are rerouted, and the API only allow
one state allocation per flow, requiring some internal NEeséad
packet processing logic to be significantly restructured.digcuss
these issues in more detail later in the paper.

3. OpenNF OVERVIEW

OpenNF is a novel control plane architecture (Figure 2) $ht
isfies the aforementioned requirements and challengehisiséc-
tion, we outline our key ideas; 84 and 85 provide the details.

OpenNF allows control applications to closely manage the be
havior and performance of NFs to satisfy high level objastiv
Based on NF output or external input, control applicatidi$:de-
termine the precise sets of flows that specific NF instancegl@h
process, (2) direct the controller to provide the needete sticeach
instance, including both flow-specific state and state shaee
tween flows, and (3) ask the controller to provide certainguoizes
on state and state operations.

In turn, the OpenNF controller encapsulates the compésxiti
of distributed state control and, when requested, guagartess-
freedom, order-preservation, and consistency for statetate op-
erations. We design two novel schemes to overcome undgrlyin
race conditions: (1) aevent abstractiorthat the controller uses
to closely observe updates to state, or to prevent updatdsibw
what update was intended, and (2jwao phase forwarding state
updatescheme. Using just the former, the controller can ensure
move operations are loss-free, and state copies are ellgrtoR-
sistent. By carefully sequencing state updates or updateption
(scheme 1) with the phases of scheme 2, the controller cameens
move operations are loss-free and order-preserving; wade@
formal proof in Appendix A. Lastly, by buffering events cefr
sponding to intended updates and handling them one at atime i
conjunction with piece-meal copying of state, the conémlian
ensure state copies are strongly or strictly consistent.

OpenNF’s southbound API defines a standard NF interface for
a controller to request events or the export or import ofrirdae
NF state. Wdeave it to the NFs to furnish all state matching a
filter specified in an export call, and to determine how to merge
existing state with state provided in an import call. Thiguiees
modest additions to NFs and, crucially, does not restriatequire
modifications to, the internal state data structures thag Rin-
tain. Furthermore, we use the well defined notion of a flow.(e.g
TCP connection) as the basis for specifying which state pmeix

Multi-flow State
StoreEntry

Per-flow State __ RequestContext

StoreEntry

RequestContext All-flows State

Statistics

Figure 3: NF state taxonomy, with state from the Squid cachig proxy
as an example

and import. This naturally aligns with the way NFs alreadyate,
read, and update state.

4. SOUTHBOUND API

In this section, we describe the design of OpenNF’s southtou
API. To ensure a variety of NFs can be easily integrated into
OpenNF, we must address two challenges: (1) account forithe d
versity of NF state and (2) minimize NF modifications.

4.1 State Taxonomy

To address the first challenge, we must identify commouealiti
in how internal state is allocated and accessed acrossugaNBs.

To this end, we examined several types of NFs from a variety of
vendors, including: NATs [10], IDSs [32], load balancers 81,
caching proxies [17], WAN optimizers [18], and traffic mani [13,
15].

We observe thastate created or updated by an NF while pro-
cessing traffic applies to either an individual flow (e.g.,Pr€n-
nection) or a collection of flowsAs shown in Figure 1, the Bro
IDS maintains connection and analyzer objects for each TDDP/
P/ICMP flow and state for each host summarizing observatiens
lating to all flows involving that host. Similarly, as showm Fig-
ure 3, the Squid caching proxy maintains socket contexyesi
context, and reply context for each client connection amthean-
tries for each requested web object. Most NFs also havevstatt
is updated for every packet or flow the NF processes: e.gjstita
about the number of packets/flows the NF proceésed.

Thus, as shown in Figure 3, we classify NF state basestope
or how many flows an NF-created piece of state applies to—one
flow (per-flow), multiple flows (nulti-flow), or all flows @ll-flow).

In particular, per-flow state refers to structures/objéus are read
or updated only when processing packets from the same flogw (e.
TCP connection), while multi-flow state is read or updatecemh
processing packets from multiple, but not all, flows.

Thinking about each piece of NF-created state in terms of its
association with flows provides a natural way for reasoningua
how a control application should move/copy/share stateekam-
ple, a control application that routes all flows destinedsfbiostH
to a specific NF instance can assume the instance will negell
flow state for flows destined fal and all multi-flow state which
stores information related to one or more flows destinedHor
This applies even in the case of seemingly non-flow-based: sta
e.g., the fingerprint table in a redundancy eliminator issiked
as all-flows state, and cache entries in a Squid caching paoxy
multi-flow state that can be referenced by client IP (to reéer
cached objects actively being served), server IP, or URL.

Prior works on NF state management either draw no assatiatio
between state and flows [26], or they do not distinguish betwe
multi-flow and all-flows state [35]. This makes it difficult kmow

the exact set of state to move, copy, or share when flows are re-

routed. For example, in the Squid caching proxy, cached veb o

4NFs also have configuration state. It is read but never ugdate
NFs, making it easy to handle; we ignore the details in thepa

jects (multi-flow states) that are currently being sent ients must

be copied to avoid disrupting these in-progress connextiohile
other cached objects may or may not be copied depending on the
SLAs a control application needs to satisfy (e.g., high ealt

ratio vs. fast scale ouf).We quantitatively show the benefits of
granular, flow-based control in §8.1.3.

We also discovered during our examination of NFs that theg te
to: (1) allocate state at many points during flow processiegy
when the Bro IDS is monitoring for malware in HTTP sessionhs, i
allocates state when the connection starts, as protocalisi@nti-
fied, and as HTTP reply data is received—and (2) organizel/lab
state in many different ways—e.g., the Squid caching pragg-o
nizes some state based on a traditional 5-tuple and sonechsised
on a URL. Prior works [35] assume NFs allocate and organite st
in particular ways (e.g., allocate state once for each flaviich
means NFs may need significant changes to use these fransework

4.2 API to Export/Import State

We leverage our taxonomy to design a simple API for NFs to
export and import pieces of state; it requires minimal NF ificat
tions. In particular, we leverage the well defined notion dtoa
(e.g., TCP or UDP connection) and our definition of state edop
allow a controller to specify exactly which state to exparimport.
State gathering and merging is delegated to NFs which parfor
these tasks within the context of their existing internahétecture.

For each scope we provide three simple functions: get, pdt, a
delete. More formally, the functions are:

mul t i map<flowid, chunk> get Per f | ow(filter)
voi d put Perfl ow mul ti map<flowid, chunk>)
voi d del Perfl owli st <flowid>)

mul t i map<flowid, chunk> get Mul ti f | ow(filter)
voi d put Mul tiflow multi map<flowid, chunk>)
voi d del Mul tiflow(list<flowid>)
I'ist<chunk get Al'l flows()

voi d put All fl ows(li st<chunk)

A filter is a dictionary specifying values for one or more stan-
dard packet header fields (e.g., source/destination IRonkefro-
tocol, source/destination ports), similar to match ciéén Open-
Flow [30].¢ This defines the set of flows whose state to get/put/del-
ete. Header fields not specified are assumed to be wildcatds. T
get Al'l f1 ows andput Al | fl ows functions do not contain a
filter because they refer to state that applies to all flows. Sityilar
there is nodel Al | f | ows function because all-flows state is al-
ways relevant regardless of the traffic an NF is processing.

A chunkof state consists of one or more related internal NF
structures, or objects, associated with the same flow (af feivs):
e.g., a chunk of per-flow state for the Bro IDS contaif@an ob-
ject and all per-flow objects it references (Figure 1). A espond-
ing flowid is provided for each chunk of per-flow and multi-flow
state. Theflowid is a dictionary of header fields and values that
describe the exact flow (e.g., TCP or UDP connection) or set of
flows (e.g., host or subnet) to which the state pertains. kame
ple, a per-flomchunkfrom the Bro IDS has dlowid that includes
the source and destination IPs, ports, and transport miptabile
a multi-flow chunkcontaining a counter for an end-host hdmaid
that only includes the host's IP.

Whenget Per fl owor get Mul tifl owis called, the NF is
responsible for identifying and providing all per-flow or hixdlow

SNF-specific state sharing features, such as inter-cactiequis

in Squid, can also be leveraged, but they do not avoid the foged
per-flow state, and some multi-flow state, to be moved or cbpie
5Some NFs may also support extendigrs andflowids that in-
clude header fields for other common protocols: e.g., thadSqu
caching proxy may include the HTTP URL.

state that pertains to flows matching fiteer. Crucially, only fields
relevant to the state are matched against the filtgher fields in
thefilter are ignored: e.g., in the Bro IDS, only the IP fields in a

filter will be considered when determining which end-host connec-

tion counters to return. This API design avoids the need fora
trol application to be aware of the way an NF internally oiigas
state. Additionally, by identifying and exporting state-@@mand,
we avoid the need to change an NF’s architecture to conforan to
specific memory allocation strategy [35].

The NF is also responsible for replacing or combining emgsti
state for a given flow (or set of flows) with state provided irra-
cation ofput Per f | ow(orput Mul ti f | ow). Common methods
of combining state include adding or averaging values (fame
ters), selecting the greatest or least value (for timessyand cal-
culating the union or intersection of sets (for lists of agidies or
ports). State merging must be implemented by individual bi&=s
cause the diversity of internal state structures makeohipitive
to provide a generic solution.

4.3 API to Observe/Prevent State Updates

The API described above does not interpose on internalgtate
ations and accesses. However, there are times when we need
prevent an NF instance from updating state—e.g., while sdie-

srclnst\ ; dstlnsl ’ srclnst\"’ \\ ’dstlnst

(a) Off-path NF (b) On-path NF

Figure 4: Assumed topologies for move operation

efficiency. We then describe how OpenNE®Bpy andshar e op-
erations provide eventual, strong, or strict consistencysfate re-
quired by multiple NF instances.

5.1 Move Operation

OpenNF'smov e operation transfers both the statadinput (i.e.,
traffic) for a set of flows from one NF instancer¢Ins) to another
(dstIns}). Its syntax is:

nove(srcinst dstinst filter, scope propertieg

As in the southbound API, the set of flows is definediligr; a
single flow is the finest granularity at which a move can octhe
scopeargument specifies which class(es) of state (per-flow and/or
multi-flow) to move, and th@ropertiesargument defines whether

tehe move should be loss-free (§5.1.1) and order-prese(gmgd.2).

In what follows,swdenotes the last SDN switch through which

ing moved—or we want to know updates are happening—e.g., 10 all packets matchinjlter will pass before diverging on their paths

determine when to copy state.

to reachsrcinstanddstinst(Figure 4). We assume the SDN con-

OpenNF uses two mechanisms to prevent and observe updatesiroller keeps track obw. We also initially assume that loss and

(1) having NFs generate packet-received events for cqréakets—
the controller tells the NF which subset of packets shoutpyér
events—and (2) controlling how NFs should act on the padkeits
generate events—process, buffer, or drop them.

Specifically, we add the following functions to the API:

voi d enabl eEvent s(filter, action)
voi d di sabl eEvent s(filter)

The filter defines the set of packets that should trigger events; i
has the same format as described in 84.2. @bgon may be
process, buf f er, ordr op; any buffered packets are released to
the NF for processing when events are disabled. The evesis-th
selves contain a copy of the triggering packet.

reordering do not occur on the network paths fremto srcinst
or swto dstlnst stronger versions of loss-free and order-preserving
move that do not rely on this assumption are described in35.1
For a move without guarantees, the controller (1) apdis Per -
f1 owanddel Per fl owon srcinst (2) callsput Per f | owon
dstinst and (3) updates the flow table ewto forward the affected
flows todstinst To move multi-flow state as well (or instead), the
¢ analogous multi-flow functions are also (instead) calledr the
rest of this section, we assume teppeis per-flow, but our ideas
can easily be extended to multi-flow state.
With the above sequence of steps, packets correspondihg to t
state being moved may continue to arrive@instfrom the start of

In the next section, we discuss how events are used to realized€t Per f I owuntil after the forwarding change sivtakes effect

important guarantees on state and state operations.

5. NORTHBOUND API

OpenNF's northbound API allows control applications to flex
ibly move, copy, or share subsets of state between NF irssanc
and to request important guarantees, including loss-r@edrder-
preservation, and various forms of consistency. This ABigieap-
propriately balances OpenNF'’s generality and complexityt of-
fering some guarantees would reduce complexity but make@pe
insufficient for use with many NFs—e.g., a redundancy elanin
tor [18] will incorrectly reconstruct packets when re-aidg oc-
curs (85.1.2). Similarly, always enforcing the strongesirgntees
would simplify the API but make OpenNF insufficient for scena
ios with tight SLAs—e.g., a loss-free and order-preserviraye is
unnecessary for a NAT, and the latency increase imposeddsg th
guarantees (88.1) could cripple VoIP sessions.

The main challenge in supporting this API is designing suit-
able, low-overhead mechanisms to provide the necessanargua
tees. In this section, we show how we use events togethefingh
grained control over network forwarding to overcome thigleh
lenge. We first describe how we provide a loss-free and quoer-
servingnove operation (we provide a formal proof of these guar-
antees in Appendix A), and what optimizations we use to im@ro

and all packets in transit &rcinsthave arrived and been read from
the NIC and operating system buffers. A simple approach ab-dr
ping these packets whencinstreceives them [35] prevensscinst
from establishing new state for the flows or failing due tosing
state. But this is only acceptable in scenarios where aricapioin

is willing to tolerate the effects of skipped processingg..escan
detection in the Bro IDS will still function if some TCP padkeare
not processed, but it may take longer to detect scans. Altigaty,
an NF may be on the forwarding path between flow endpoints (Fig
ure 4(b)), e.g., a Squid caching proxy, in which case droppeg
packets will be retransmitted, although throughput wilteguced.

5.1.1 Loss-free Move

In some situations loss is problematic: e.g., the Bro IDS&@-m
ware detection script will compute incorrect md5sums arildtda
detect malicious content if part of an HTTP reply is missing
quantify this in 88.1.2. Thus, we need a move operation #i#g-s
fies the following property:

Loss-free: All state updates resulting from packet process-
ing should be reflected at the destination instance, and all
packets the switch receives should be processed.

The first half of this property is important for ensuring aifar-
mation pertaining to a flow (or group of flows) is available fz t

instance where subsequent packet processing for the flovil(s)
occur, and that information is not left, or discarded, atdhginal
instance. The latter half ensures an NF does not miss gagheri
important information about a flow.

In an attempt to be loss-free, Split/Merge halts, and bsifégr
the controller, all traffic arriving asw while migrating per-flow
state [35]. However, when traffic is halted, packets mayaalyebe
in-transit tosrcinst or sitting in NIC or operating system queues at

srcinst Split/Merge drops these packets when they (arrive and) are

dequeued asrcinst This ensures thatrcinstdoes not attempt to
update (or create new) per-flow state after the transferadé $tas
started, guaranteeing the first half of our loss-free prtypétow-
ever, dropping packets atclnstviolates the latter half. While we
could modify Split/Merge to delay state transfer until paiskhave
drained from the network and local queues, it is impossiblabw
how long to wait, and extra waiting increases the delay iradam
packets buffered at the controller.

SDN consistency abstractions [28, 36] are also insuffidient
guaranteeing loss-freedom. They can guarantee packétsevidr-
warded tesrclnstor dstinst but they do not provide any guarantees
on what happens to the packets once they arrive at the Nfoesta

| ctri sw dstinst
Flush buffer{| Py
Pisy Pi
Request routel Pix Process p;
update Recv p;,, Process p;,;

|
Pis2 |
Recv p;,3
Pis2

Update Route

Pis3

Process p;
Pir2 Pisa

Process p;,,
Figure 5: Order-preserving problem in Split/Merge

state, across flows (e.g., process an FTP get command bbéore t
SYN for the new transfer connection).

Unfortunately, neither Split/Merge nor the loss-free male
scribed above are order-preserving. The basic problemtindys-
tems is a race between flushing packets buffered at the dlentro
and changing the flow table awvto forward all packets tdstinst
Figure 5illustrates the problem in the context of Split/ierEven
if all buffered packetsy; and p;+ ;) are flushed before the con-
troller requests a forwarding table updatesa another packet

If srcinstprocesses the packets after state transfer has startad, the (pi+2) may arrive aiswand be forwarded to the controller before

the state installed alstinstwill not include some updates;sfcinst
drops the packets instead, then some state updates witl oever.

swapplies the forwarding table update. Once the update iseappl
swmay start forwarding packetg,(s) to dstinst but the controller

What then should we do to ensure loss-freedom in the face of may not have received the packet » from sw. Thus, the packet

packets that are in-transit (or buffered) when the move aijmer
starts? In OpenNF, we leverage events raised by NFs. Sgadigific
the controller callenabl eEvent s(filter, dr op) onsrcinstbe-
fore callingget Per f | ow. This causesrcinstto raise an event
for each received packet matchifijer. The events are buffered
at the controller until theut Per f | owcall ondstinstcompletes.
Then, the packet in each buffered event is seatitto be forwarded
to dstinst any events arriving at the controller after the buffer has
been emptied are handled immediately in the same way. L-&stly
flow table onswis updated to forward the affected flowsdstinst
Callingdi sabl eEvent s(filter) onsrcinstis unnecessary, be-
cause packets matchifitier will eventually stop arriving asrcinst
and no more events will be generated. Nonetheless, to eimin
the need fosrcinstto check if it should raised events for incoming
packets, the controller can issue this call after sevenalitas—i.e.,
after all packets matchinigter have likely arrived or timed out.

5.1.2 Order-preserving Move

In addition to loss, NFs can be negatively affected by reeomnd).
For example, the “weird activity” policy script included thithe
Bro IDS will raise afalse “SYN_inside_connection” alerthie IDS
receives and processes SYN and data packets in a differéet or
than they were actually exchanged by the connection entfpoin
Another example is a redundancy elimination decoder [18n&h
an encoded packet arriving before the data packet w.r.tchwiti
was encoded will be silently dropped; this can cause thedigto
data store to rapidly become out of synch with the encoders.

Thus, we need a move operation that satisfies the following:

Order-preserving: All packets should be processed in the
order they were forwarded to the NF instances by the switch.

This property applies within one direction of a flow (e.g.oqess
SYN before ACK), across both directions of a floe.g., pro-
cess SYN before SYN+ACK), and, for moves including multiaflo

"I packets in opposite directions do not traverse a commatcw

before reaching the NF—e.g., a NAT is placed between two

switches—then we lack a vantage point to know the total oofler
packets across directions, and we cannot guarantee suafiemn o

pi+2 Will be forwarded todstinstafter a later packet of the flow
(pi+3) has already been forwardeddstinst

We use a clever combination of events and a two-phase forward
ing state update to guarantee a loss-&egorder-preserving move.
Figure 6 has psuedo-code for the steps.

1 eventReceivedFromSrcinst éveny

2 if shouldBufferEventthen

3 eventQueuenqueue évent.packet

4 else

5 swforward (event.packet, dstinst

6 packetReceivedFromSw gacke}

7 if lastPacketFromSw==ull then

8 signal (GOT_FIRST_PKT_FROM_SW // wait @24
lastPacketFromSw— packet

©

10 eventReceivedFromDstInst éveny
11 if event.packet == lastPacketFromSten
12 signal (DST_PROCESSED_LAST PKT// wait @ 26

13 moveLossfreeOrderpreserve grcinst, dstinst, filter
14 shouldBufferEvents— true

15 srcinstenableEvents filiter, DROP)

16 chunks« srcinstgetPerflow filter)

17 srcinstdelPerflow (chunks.keys

18 dstinstputPerflow (chunk$

19 foreach eventin eventQueuelo

20 swforward (event.packet, dstinst

21 shouldBufferEvents— false

22 dstinstenableEvents filter, BUFFER

23 swinstall (filter, { srcinst, ctr}, LOW_PRIORITY)
24 wait (GOT_FIRST_PKT_FROM_SW

25 swinstall (filter, dstinst,HIGH_PRIORITY)

26 wait (DST_PROCESSED_LAST_PKT

27 dstinstdisableEvents filter)

Figure 6: Pseudo-code for loss-free and order-preserving ave

We start with the steps used for a loss-free move, through cal
ing put Per f | owondstinst After put Per f | owcompletes we
extract the packet from each buffered event, mark it withecisp

unless it is enforced by a flow’s end-points—e.g., a servémot
send SYN+ACK until the NAT forwards the SYN from a client.

“do-not-buffer” flag, and send it tewto be forwarded talstinst
any events arriving at the controller after the buffer haasnbemp-
tied are handled immediately in the same way. Then, weecedt
bl eEvent s(filter, buf f er) ondstinst so that any packets for-
warded directly talstinstby swwill be buffered; note that the pack-
ets marked with “do-not-buffer” (discussed above) are nffelned.

Next, we perform the two phase forwarding state update ,Firs
we update the forwarding entry fdiiter on swto forward match-
ing packets to botbrcinstand the controlle?. The controller waits
for at least one packet frosw, and always stores the most recent
packet it receives. Second, we install a higher priorityvénd-
ing entry forfilter on swto forward matching packets tstinst
Through this two phase update, the controller can becomeeanfa
thelast packet sent tercinst®

Finally, we need to ensure thdstinstprocesses all packets for-
warded tosrcinst before processing any packets tlsat directly
forwards todstinst We achieve this with the following sequence
of steps: (1) wait for an event frosrcinstfor the last packet sent
to srcinst—this is the packet we stored during the two phase for-
warding state update; (2) send the packet contained in thetev
to swto forward todstinst (3) wait for an event frondstinstfor
the packet; and (4) calli sabl eEvent s(filter) ondstinstto re-
lease any packets that had already been sedstlostby swand
were buffered atlstinst

The additional waiting required for order-preserving doesie
at a performance cost (we quantify this in 88.1.1). Thus, ffer o
applications three versions of move (loss-free and ordesgrving,
loss-free only, and no guarantees) so they can select thiegffies
cient version that satisfies their requirements.

5.1.3 Guarantees with Lossy Network Paths

While the above mechanisms guarantee a loss-free and orderz21

preserving move when no loss or reordering occurs on thespath
from swto srcinstandswto dstinst(proof in Appendix A), these
properties are not guaranteed with lossy network path&elpath
from swto dstinstis lossy, a packet frorsrcinstsent by the con-
troller to swto be forwarded taistinstcould be dropped after it

is forwarded bysw.!® Packets could also be re-ordered after being
forwarded bysw. If the path fromswto srcinstis lossy, a packet
forwarded bysw after the first phase route update would reach the
controller but might not reackrcinst this meanssrcinst would
never raise an event for the packet and the packet would hever
sent todstinst Hence, the controller would wait indefinitely for an
event fromdstinstfor the packet (line 26 in Figure 6).

To cope with loss and re-ordering on the path fremto dstinst
we simply need to send packets from events directly from ¢ime c
troller todstlnstvia a TCP-based control channel, rather than send-
ing the packets tewto be forwarded talstinst This change allows
us to satisfy our loss-free property.

To satisfy our order-preserving property, we also need f@®co
with loss on theswto srcinstpath. Our solution is to skip the first
phase forwarding update and use special “tracer” packetstey-
mine when the last “regular” packet has been processesuidbyst

ing packets tadstinst We then send a tracer packetdw to be
forwarded tosrcinst Since we have already re-routed the relevant
traffic todstinst the tracer packet should be the last packet to arrive
atsrcinst Thus, when we get an event frarcinstcontaining the
tracer packet, we know thatcinsthas processed the last regular
packet (lines 1-3); this last regular packet should haveipusly
been stored (line 5). Lastly, we wait (line 26) for an evewinir
dstinstthat it has received and processed the last regular packet
(lines 10-12) before releasing the buffered packetssimst? (line

28). Since the tracer packet could be lost on the path farto
srcinst we wait with a timeout and retransmit the tracer packet if
necessary (lines 24-27).

1 eventReceivedFromSrcinst éveny
2 if event.packet == tracerPkhen
3 srcProcessedLastPkt true
4 else
5 lastPktFromSre— event.packet
6 if shouldBufferEventthen
7 eventQueuenqueue évent.packet
8 else
9 swforward (event.packet, dstinst
10 eventReceivedFromDstInst évenj
11 if event.packet == lastPktFromSre srcProcessedLastPkben
12 signal (DST_PROCESSED_LAST PKT// wait @ 26
13 moveLossfreeOrderpreserve grcinst, dstinst, filter
14 shouldBufferEvents— true
15 srcinstenableEvents filter, DROP)
16 chunks« srcinstgetPerflow filter)
17 srcinstdelPerflow (chunks.keys
18 dstinstputPerflow (chunk$
19 foreach eventin eventQueuelo

20 swforward (event.packet, dstinst

shouldBufferEvents- false

22 dstinstenableEvents filter, BUFFER
23 swinstall (filter, dstins}
repeat
swforward (tracerPkt, srcinsk
26 signaled«+— wait (DST_PROCESSED_LAST_PKT
TIMEOUT)
27 until signaled
28 dstinstdisableEvents filter)

Figure 7: Pseudo-code for loss-free and order-preserving ave when
network paths are lossy

In Appendix A, we formally prove that this sequence of steps i
loss-free and order-preserving even when network path®ssg.
Providing these guarantees when there is reordering ondtie p
from swto srcinstremains an open problem.

5.1.4 Optimizations

Supporting the above guarantees may impose additional-late
cies on packets arriving during the move operation. In paldr,
when a move involves multiple flows, we halt the processing of
those flows’ packets from the tinemabl eEvent s is called until
afterput Per f | owcompletes.

The revised steps are shown in Figure 7. Lines 13 to 22 are the One way to reduce these latencies (and reduce drops in tee cas

same as the steps in Figure 6. After enabling bufferinglstimst
we update the forwarding entry fdiiter on swto forward match-

8\We use existing SDN consistency mechanisms [28, 36] to ensur
the update is atomic and no packets are lost.

9The controller can check the counters on the first flow entgin
against the number of packets it has received fsao ensure the
packet it currently has stored is in fact the last packet.

10The packet will not be dropped between the controller ambe-
cause the packet is sentdwover a TCP-based control channel.

of a move without guarantees) is to reduce the total timentaée
complete the move operation. To achieve this, an applicatald
issue multiple pipelined moves that each cover a smallegigooof
the flow space. However, this requires more forwarding runesy
and requires the application to know how flows are divided rmgno
the flow space. Instead, we can leverage the factdbatPer -

f | owandput Per f | owoperations can be, at least partially, ex-

packets arriving adstinstcontinue to be buffered until the buffer
has been emptied.

ecutedin parallel. Rather than returning all requested states as a
single result, thercinstcan return eachhunkof per-flow state im-
mediately, and the controller can immediately galit Per f | ow
with just thatchunk The forwarding table update(s) s occurs
after theget Per f | owand allput Per f | owcalls have returned.

The additional latency imposed on redirected packets cénrbe
ther reduced by following ararly release and late locking strat-
egy For late-locking, the controller caltget Per f | owon srcinst
with a special flag instructingrcinstto enable events for each flow
just before the corresponding per-flow state is prepareéxport
(avoiding the need to caénabl eEvent s for all flows before-
hand). Also, oncgut Per f | owfor a specificchunkreturns, the
controller can release any events pertaining to ¢hank?

The parallelizing optimization can be applied to any version of
move, and thearly-releaseoptimization can be applied to a move
of either per-flow or multi-flow state, but not a move involgiboth.

5.2 Copy and Share Operations

OpenNF'scopy andshar e operations address applications’
need for the same state to be readable and/or updateablétiatenu
NF instances and, potentially, for updates made at onenoste
be reflected elsewhere. For example, in a failure recoveplicap
tion (82) a backup NF instance needs to keep an updated caly of
per-/multi-/all-flows state. Similarly, a load balancingpéication
that distributes an end-host’s flows among multiple IDSanses
needs updates to the host connection counter at one instabee
reflected at the other instances to effectively detect pamns.

In particular,copy can be used when state consistencyds
required or eventualconsistency is desired, whikhar e can be
used wherstrongor strict consistency is desired. Note that eventual
consistency is akin to extending our loss-free property titipie
copies of state, while strict consistency is akin to extegdioth our
loss-free and order-preserving properties to multiple iNfEances.

5.2.1 Copy Operation

OpenNF's copy operation clones state from one NF instance
(srcins) to another @stins). Its syntax is:

copy(srcinst dstinst filter, scopé

Thefilter argument specifies the set of flows whose state to copy,
while the scopeargument specifies which class(es) of state (per-
flow, multi-flow, and/or all-flows) to copy.

Thecopy operation is implemented using the get and put calls
from the southbound API (84.2). No change in forwardingestet
curs as part of copy because state is not deleted $romst allow-
ing srcinstto continue processing traffic and updating its copy of
state. It is up to control applications to separately itétia change
in forwarding state where the situation warrants (e.g., iogatly
interacting with the SDN controller, or callimgpv e for some other
class of state).

Eventual consistency can be achieved by occasionallypgiog
the same set of state. As described in 4.2, an NF will auiocaiit
replace or combine the new and existing copies wbenPer -
flow, putMul tiflow, andput Al'l fl ows are called. Since

there are many possible ways to decide when state should be re

copied—based on time, NF output, updates to NF state, or othe
external factors—we leave it to applications to issue sgibset
copy calls. As a convenience, we do provide a function fotrabn
applications to becomawareof state updates:

voi d not i fy(filter, inst, enable callback

2Although state chunks get transferred and events get sedasa
the controller in our current system, they can also happen foe
peer.

When invoked withenableset to true, the controller callsna-

bl eEvent s(filter, pr ocess) on NF instancénst, otherwise it
callsdi sabl eEvent s(filter) oninst For each event the con-
troller receives, it invokes the providedllbackfunction.

5.2.2 Share Operation

Strong and strict consistency are more difficult to achiese b
cause state reads and updates must occur at each NF ingtance i
the same global order. For strict consistency this globd¢omust
match the order in which packets are receivedsby For strong
consistency the global order may differ from the order in chhi
packets were received tsyy, but updates for packets received by a
specific NF instance must occur in the global order in the rotfake
instance received the packets.

Both cases require synchronizing reads/updates acrdsk &+
stancesl(i st <inst>) that are using a given piece of state. OpenNF’s
shar e operation provides this:

voi d share(li st <inst, filter, scope consistency

Thefilter andscopearguments are the same as above, wtile-
sistencyis settost rong orstri ct.

Events can again be used to keep state strongly consisteat. T
controller callsenabl eEvent s(filter, dr op) on each instance,
followed by a sequence of get and put calls to initially syodize
their state. When events arrive at the controller, they &eegl in
a FIFO queue labeled with tHewid for the flow group to which
they pertain; flows are grouped based on the coarsest griayoia
state being shared (e.g., per-host or per-prefix).

For each queue, one event at a time is dequeued, and the packet
it contains is marked with a “do-not-drop” flag and forwarded
the originating NF instance. The NF instance processesatieep
and raises an event, which signals to the controller thastate
reads/updates at the NF are complete. The controller thin ca
get Mul tifl ow(orget Perfl ow,get Al | fl ows)on the orig-
inating NF instance, followed byut Mul ti f | ow (or put Per -
flow, put Al'l fl ows) on all other instances ihi st <inst>.
Then, the next event is dequeued and the process repeated.

Since events from different NFs may arrive at the contraler
a different order than packets were receivedshy we require a
slightly different approach for strict consistency. Theniroller
must receive packets directly from the switch to know thebglo
order in which packets should be processed. We thereforateipd
all relevant forwarding entries isw—i.e., entries that both cover
a portion of the flow space covered biger and forward to an in-
stance inl i st <inst>—to forward to the controller instead. We
then employ the same methodology as above, except we invoke
enabl eEvent s with actionset topr ocess and queue packets
received fromswrather than receiving packets via events.

It is up to control applications to determine the appropriain-
sistency requirements for the situation, recognizing #tang or
strict consistency comes at a significant performance &8s1(1).
Applications should also consider which multi-/all-flovtate is re-
quired for accurate packet processing, and, generallgkancopy
or share operations on this state prior to moving per-flotesta

6. CONTROL APPLICATIONS

Using OpenNF, we have written control applications for salve
of the scenarios described in §2. The applications are aedifpr
the environment shown in Figure 8. In all applications, we the
Bro IDS, but different applications place different reguirents on
both the granularities of state operations and the guaramieeded;
despite these differences, the applications are relgtsieiple to
implement. We describe them below.

Local data gpNEEN| & Zinternet aw
center . B
Switch, . S
Public)
oldInst/ newinst/ A cloud
norminst stbylnst ¥ cloudinst |

Figure 8: The Bro IDS runs on VMs in both a local data center anda
public cloud. An SDN switch in the local data center receives copy of
all traffic from the Internet gateway for the local network and routes
it to an IDS instance. The local IDS instances monitor for pot scans
and HTTP requests from outdated web browsers. The cloud insinces
additionally check for malware in HTTP replies.

1 movePrefix (refix, oldInst, newIngt
copy (oldInst, newInst{nw_src: prefix}, MULTI)
move (ldInst, newlInst{nw_src: prefix, PER LOSSFREE
while truedo
sleep 60)
copy (oldInst, newlInst{nw_src: prefix}, MULTI)
copy (newlnst, oldinst{nw_src: prefix}, MULTI)

~NoO b~ wN

Figure 9: Load balanced network monitoring application

High performance network monitoring. The first application
(Figure 9) monitors the CPU load on the local Bro IDS instance
and calculates a new distribution of local network prefixdgemw
load becomes imbalanced. If a subnet is assigned to a differe
IDS instance, therovePr ef i x function is invoked. This func-
tion callscopy to clone the multi-flow state associated with scan
detection, followed byrove to perform a loss-free transfer of the
per-flow state for all active flows in the subnet.

We copy, rather than move, multi-flow state because the coun-
ters for port scan detection are maintained on the bagiextérnal
IP, destination pojtpairs, and connections may exist between a
single external host and hosts in multiple local subnets.ofster-
preserving move is unnecessary because re-ordering waiyd
potentially result in the scan detector failing to count sooon-
nection attempts, and, in this application, we are williogdierate
moderate delay in scan detection. However, to avoid missiags
completely, we maintain eventual consistency of multi-flsate
by invoking copy in both directions every 60 seconds.
Fast failure recovery. The second application (Figure 10) main-
tains a hot standby for each local IDS instance with an eadiytu
consistent copy of all per-flow and multi-flow state. The
i nit Standby function is invoked to initialize a standby
(st byl nst) for an IDS instancen(or m nst). It notes which
nor ml nst the standby is associated with and requests notifica-
tions fromnor m nst for packets whose corresponding state up-
dates are important for scan detection and browser ideattific—
TCP SYN, SYN+ACK, and RST packets and HTTP packets sent
from a local client to an external server. The copy is mad&-eve
tually consistent when these key packets are processedy taain
recopying state for every packet. In particular, eventsraiged
by nor m nst for these packets and the controller invokes the
updat eSt andby function. This function copies the appropriate
per-flow state frormor m nst to the correspondingt byl nst .
When a failure occurs, the forwarding table in the switchps u
dated to forward the appropriate prefixestdy| nst instead of
nor m nst (code not shown).
Selectively invoking advanced remote processing.he third ap-
plication (code not shown) monitors for outdated browsertal
from each local Bro IDS instance, and uses the cloud to chack f
malware in connections triggering such alerts.

When a local IDS instancé ¢cl nst) raises an alert for a spe-
cific flow (fl owi d), the application callsmove(l ocl nst,
cl oudl nst, fl owi d, perfl ow, orderpreserving) to

0]

o

1 standbys— {}

2 initStandby (norminst, stbylngt

3 standbyfnormins} < stbylnst

4 notify ({nw_proto: TCP, tcp_flags: SYN}norminst,true
updateStandby)
notify ({nw_proto: TCP, tcp_flags: RSThorminst,true,
updateStandby)
notify ({nw_src: 10.0.0.0/8, nw_proto: TCP, tp_dst: 80}
norminst,true, updateStandby)

updateStandby eveny
norminst«— event.src
stbylnst«— standbyfnorminst
filter +— extractFlowld (event.pKt
copy (horminst, stbylnst, filtelrPER

5

= O © 0w~

Figure 10: Fast failure recovery application

transfer the flow’s per-flow state and forward the flow’s paske

the IDS instance running in the cloud. The move must be loess-f

to ensure all data packets contained in the HTTP reply asvedt

and included in the md5sum that is compared against a malware
database, otherwise malware may go undetected. Multi-flate s

in this case, i.e., the set of scan counters at the local |B@tice,
does not matter for the cloud instance’s actions (i.e., agvsig-
nature detection), so it is not moved or copied.

7. IMPLEMENTATION

Our OpenNF prototype consists of a controller that impleimen
our northbound API (85) and several modified NFs—Bro, PRADS,
Squid, and iptables—that implement our southbound API.(84)

The OpenNF controller is written as a module atop Floodljght
(~4.7K lines of Java code). The controller listens for conioest
from NFs and launches two threads—for handling state opesat
and events—for each NF. The controller and NFs exchange JSON
messages to invoke southbound functions, provide funcésults,
and send events. Packets contained in events are forwardest
by issuing OpenFlow packet-out control messages [30] t&b
switch (sw); flow-mod messages are issued for route updates. The
interface with control applications is event-driven.

We implemented NF-specific handlers for each southbound API
functions. The NFs use a shared library for communicatingp wi
the controller. We discuss the NF-specific modificationswelnd
evaluate the extent of these modifications in §8.2.2.

Bro IDS [32] performs a variety of security analyses defined by
policy scripts. Theget /put Per f | ow handlers for Bro lookup
(using linear search) and ins&@bnnect i on objects into internal
hash tables for TCP, UDP, and ICMP connections. The key chal-
lenge is serializing theseonnect i on objects and the many other
objects 100 classes) they refer to; we wrote custom serialization
functions for each of these objects using Boost [2]. We alisled a
movedflag to some of these classes—to prevent Bro from logging
errors duringdel Per f | ow—and a mutex to th€onnect i on
class—to prevent Bro from modifying the objects associatit

a flow while they are being serialized. Lastly, we added fjpra
calls to Bro’s main packet processing loop to raise eventsmé
received packet matches a filter on which events are enabled.
PRADS asset monitor[15] identifies and logs basic information
about active hosts and the services they are runningg&héput -
Per f | owandget /put Mul ti f | owhandlers for PRADS lookup
and inserconnect i on andasset structures, which store flow
meta data and end-host operating system and service degils
spectively, in the appropriate hash tables. lfaaset object pro-
vided in aput Mul ti f1 owcall is associated with the same end-
host as amsset object already in the hash table, then the handler

merges the contents of the two objects. et /put Al | f1 ows
handlers copy and merge, respectively, a global statistiasture.
Squid caching proxy [17] reduces bandwidth consumption by
caching and serving web objects requested by clients. The pe
flow state in Squid includes sockets, making it challengongtite

get /put Per f | owhandlers. Fortunately, we are able to borrow
code from CRIU [6] to (de)serialize sockets for active diand
server connections. As with Bro, we wrote custom seridbmat
functions, using Boost [2], for all objects associated veidich con-
nection. Theget /put /del Mul ti f 1 owhandlers capture, insert,
and remove entries from Squid’s in-memory cache; entries ar
(de)serialized individually to allow for fine-grained statontrol.
iptables[10] is a firewall and network address translator integrated
into the Linux kernel. The kernel tracks the 5-tuple, TCResta
security marks, etc. for all active flows; this state is reaifien by
iptables. We wrote an agent that uses libnetfilter_conktibt] to
capture and insert this state whget /put Per f | oware invoked.
There is no multi-flow or all-flows state in iptables.

8. EVALUATION

Our evaluation of OpenNF answers the following key question

e Can state be moved, copied, and shared efficiently even when
guarantees on state or state operations are requestedlby app
cations? What benefits do applications see from the ability .

to move, copy, or share state at varying granularities?

e How efficiently can NFs export and import state, and do these
operations impact NF performance? How much must NFs be

modified to support the southbound API?

e How is OpenNF's efficiency impacted by the scale of an NF
deployment?

e To what extent do existing NF control planes hinder the abil-
ity to satisfy a combination of high-level objectives?

The testbed we used for our evaluation consists of an OperFlo

NG
NG PL
LF PL

LF PL+ER
LF+OP PL+ER

(a) Totalnove time

LC>,~ 250

_

22200 | :

g2

Z 9150 F

S 8100 t

Qo

oIS I\ . T
o) B /
o 0 KRR)

Average Maximum

(b) Per-packet latency increase

Figure 11: Efficiency of mbv e with no guarantees (NG), loss-free (LF),
and loss-free and order-preserving (LF+OP) with and withou paral-
lelizing (PL) and early-release (ER) optimizations; traffic rate is 2500
packets/sec; times are averaged over 5 runs and the error barshow
95% confidence intervals

A move without any guarantees or optimizations (NG) congslet
in 193ms. This time is primarily dictated by the time reqdifer
the NF to export (89ms) and import (54ms) state; we evaluede t
southbound operations in detail in §8.2. The remaining 58ms
spent processing control messages from the NFs and penigrmi
the route update. Our parallelizing optimization (85.tah) reduce
the total time for the move operation (NG PL) to 134ms by ekpor
ing and importing state (mostly) in parallel. However, evhis
faster version of move comes at a co225 packets are dropped!
Figure 12(a) shows how the number of drops changes as adancti
of the packet rate and the number of flows whose state is moved.

enabled HP ProCurve 6600 switch and four mid-range servers We observe a linear increase in the number of drops as thepack

(Quad-core Intel Xeon 2.8GHz, 8GB, 2 x 1Gbps NICs) that run
the OpenNF controller and modified NFs and generate traffe. W
use a combination of replayed university-to-cloud [25] alada-
center [21] network traffic traces, along with synthetic kioads.

8.1 Northbound Operations

8.1.1 Efficiency with Guarantees

We first evaluate the efficiency of our northbound operations
when guarantees are requested on state or state operaiense
two PRADS asset monitor instanceBRADS, and PRADS5)
and replay our university-to-cloud trace at 2500 packets/sd.
We initially send all traffic toPRADS;. Once it has created
state for 500 flows~#80K packets have been processed) e e
all flows and their per-flow state, @opy all multi-flow state, to
PRADS,; we evaluate finer granularity operations in §8.1.3. To
evaluate sharing with strong consistency, we insteadstar e
(for all multi-flow state) at the beginning of the experimeand
then replay our traffic trace. During these operations, wasuee
the number of dropped packets, the added latency for pac&ats
tained in events fronP RADS, or buffered atPRADS>, and the
total operation time (for move and copy only). Although tipes
cific values for these metrics vary based on the NF, scoper filt
granularity (i.e., number of flows/states affected), anckparate,
the high-level takeaways still apply.

Move. Figure 11 shows our results fomve with varying guar-
antees and optimizations; we use the weaker versions of preve
sented in 85.1.1 and 85.1.2.

10

rate increases, because more packets will arrive in thevtiimeow
between the start afove and the routing update taking effect.

A parallelized loss-free move (LF PL) avoids drops by raisin
events. However, the 410 packets contained in events mdy eac
incur up to 185ms of additional latency. (Packets processed
PRADS, before the move oPRADS- after the move do not
incur additional latency.) Additionally, the total timerfthe move
operation increases by 62% (84ms). Figure 12(b) shows hew th
total move time scales with the number of flows affected ard th
packet rate. We observe that the total time for a paralleliass-
free move increases more substantially at higher packes.rahis
is because more events are raised, and the rate at whichdketpa
contained in these events can be forwarde® 8A DS, becomes
limited by the packet-out rate our OpenFlow switch can snsta
The average and maximum per-packet latency increase feefsac
contained in events also grows with packet rate for the saamon:
e.g., the average (maximum) per-packet latency increa#g5ins
(573ms) for a parallelized loss-free move of 500 flows at &giac
rate of 10K packets/sec (graph not shown).

While we cannot decrease the total move time without using
more rules in SDN switches, our early-release optimiza@anl.4)
can decrease the additional packet latency. At a rate of R&OK-
ets/sec, the average per-packet latency overhead for hgsRRets
contained in events drops to 50ms (LF PL+ER in Figure 11¢b)),
63% decrease compared to LF PL; at 10K packets/sec thiseagrh
drops to 201ms, a 99% decrease. Forwarding packets in edients
rectly to PRAD.S,, rather than sending packet-out commands to
the OpenFlow switch, can likely reduce this latency evethfr

2 . . . —~ 800 ; ;
2 1500 250 flows - g 250 flows —< 4
3 500 flows ol =600 f 500 flows
o 1000 r1000 flows -#-" 12 1000 flows -e- e
o = 400 I T]
2 e .
g_ 500 / g 200 | /
a 0) . . = . . .
#*

0 25 5 75 10 0 2.5 5 75 10

Packet Rate (1000s of pkts/s) Packet Rate (1000s of pkts/s)

(a) Packet drops during a parg@h) Total time for a parallelized
lelizednov e with no guarantee®ss-freemove

Figure 12: Impact of packet rate and number of per-flows stats on
parallelized nov e with and without a loss-free guarantee

In addition to added packet latency, a loss-free move akso-in
duces re-ordering: 657 packets (335 from events + 322 redeiv
by PRADS- while packets from events are still arriving) are pro-
cessed out-of-order with a parallelized loss-free movewéler,
this re-ordering can be eliminated with an order-preserwiove.

A fully optimized loss-free and order-preserving move (I0#=
PL+ER in Figure 11) takes 96% (208ms) longer than a fully-opti
mized loss-free-only move (LF PL+ER) due to the additioneps
involved. Furthermore, packets bufferedRRADS> (100 pack-
ets on average), while waiting for all packets originallyntséo
PRADS, to arrive and be processed, each incur up to 96ms of
additional latency (7% more than LF PL+ER). Thus, apploagi
can benefit from choosing an alternative version of movesiy ttho
not require both guarantees.

Copy and Share.A parallelized copy takes 111ms, with no packet
drops or added packet latency, as there is no interactiomeleet
forwarding state update and this operation. In contrastaaesop-
eration that keeps multi-flow state strongly consistensaatdeast
13ms of latency to every packet, with more latency incurrbemva
packet must wait for the processing of an earlier packetnptete.
This latency stems from the need to cgkt Mul ti fl ow and
putMul tifl owonPRADS: andPRADS5, respectively, after
every packet is processed, because our events only provitieals

to whether state changed but do not inform us if the statetepda
is significant. For example, every packet processed by thAFR
asset monitor causes an update to the last seen timestarhe in t
multi-flow state object for the source host, but only a hahdfu
special packets (e.g., TCP handshake and HTTP requesttpacke
result in interesting updates to the object. However, ayidiore
PRADS asset monitor instances (we experimented with upne 6 i
stances) does not increase the latency becpuséul ti f | ow
calls can be issued in parallel. In general, it is difficulefficiently
support strong consistency of state without more intrissigport
from an NF, e.g., information on the significance of a statat.

8.1.2 Importance of Guarantees

Alert Baseline NG LF LF+OP
Incorrect File Type 26 25 24 26
Malware Hash Registry Match 31 28 27 31
MD5 116 111 106 116
Total 173 164 157 173
Table 1: Effects of different guarantees
Metric Ignore Copy Client Copy All
Hits on Squidy 117 117 117
Hits on Squida Crashed 39 50
MB of multi-flow state transfered 0 3.8 54.4

Table 2: Effects of different ways of handling multi-flow

trast, no alerts are missing with a loss-free plus ordeseyreng
move. Thus, the guarantees offered by our northbound ARésre
sential to accurately monitoring and manipulating netwialfic
when packet processing is dynamically redistributed.

8.1.3 Benefits of Granular Control

Although thenove, copy, andshar e operations above en-
compassed all flows, the northbound API allows applicattoris-
voke these operations at any granularity, down to as fine egkes
flow. We now examine the benefits this flexibility enables bings
the copy operation with the Squid caching proxy. We generate
100 requests (drawn from a logarithmic distribution) for#Gque
URLSs (objects are 0.5-4MB in size) from each of two clients at
a rate of 5 requests/second. Initially, all requests aredoded
to Squid,. After 20 seconds, we launch a second Squid instance
(Squid2) and take one of three approaches to handling multi-flow
state: do nothingignore), invoke copy with the second client’s
IP as the filter ¢opy clien}, or invokecopy for all flows (copy
all). Then, we update routing to forward all in-progress andriit
requests from the second client§quids.

Table 2 shows the number of cache hits at each instance, and
the bytes of multi-flow state transfered, under the threteint
approaches for handling multi-flow state. In all three apphes,
the number of cache hits f&fquid, are the same because all the
unique objects were cached before the copy. Ignoring rfiolti-
state entirely causes the second instanceréash as the objects
currently being served to the second client are not availabbpy-
ing multi-flow state for the second client’s flows avoids thast,
but skipping the other multi-flow state results in a 28% loaeche
hit ratio at Squid. compared to copying all multi-flow state (i.e,
the entire cache). However, the latter requires a 14.2xtastate
transfer. OpenNF’s APIs allows each application to makeathe
propriate trade-offs in such respects when selecting theularity
at which to invoke operations.

8.2 Southbound API

The time required to export and import state at NFs directly i
pacts how quickly armove or copy operation completes and how

We next evaluate the importance of the guarantees offered by much additional packet latency is incurred whemar e is used.

our northbound API. Our methodology is similar to our experi
ments above, except we use the Bro IDS with a malware detectio
script [3], and we replay a trace of malware traffic [12] at 00
packets/second. We issue a move operation (with the piégzalle
optimization) after 14K packets have been processed.

We compare the alerts raised by the Bro IDS when no move

is performed (baseline) versus when a no guarantee (NG3; los
free (LF), or loss-free plus order-preserving (LF+OP) misveer-
formed. Table 1 shows the type and number of alerts raisedrund
each scenario. We observe that 5% and 9% of the alerts aredniss
with a no guarantee or loss-free move, respectively. Maesbre
missed with loss-free because re-ordering is introducedcoh-

11

We thus evaluate the efficiency of OpenNF’s southbound epera
tions for several of the NFs we modified. We also examine how
much code was added to the NFs to support these operations.

8.2.1 API Call Processing

Figures 13(a) and 13(b) show the time required to complete a
get Per f | owandput Per f | owoperation, respectively, as a func-
tion of the number of flows whose state is exported/impori&e.
observe a linear increase in the execution timgef Per f | ow
andput Per f | owas the number of per-flow state chunks increases.
The time required to (de)serialize eadcfunkof state and send it
to (receive it from) the controller accounts for the majpof the

%1000 ‘ : 150 ’ :
£ 250 flows &2 £ 250 flows 22
< 800 | 500 flows <125 1 500 flows

£ 1000 flows £ 100 | 1000 flows

£ 600 t =

2 400 g

£ £ 50

§ 200 £ 25

g 2 o=

iptables PRADS Bro Bro

(a) Time forget Per f | ow

iptables PRADS
(b) Time forput Per f | ow

Figure 13: Efficiency of state export and import

LOC added for Total Increase in
NF serialization LOC added NF code
Bro IDS 2.9K 3.3K 4.0%
PRADS asset monitor 0.1K 1.0K 9.8%
Squid caching proxy 5.0K 7.8K 4.2%
iptables 0.6K 1.0K n/a

Table 3: Additional NF code to implement OpenNF'’s southboud API

execution time. Additionally, we observe thait Per f | owcom-
pletes at least 2x faster thget Per f | ow; this is due to deserial-
ization being faster than serialization. Overall, the ps®ing time

is highest for Bro because of the size and complexity of the pe
flow state. The results for multi-flow state are qualitagvaimilar;

we exclude them for brevity. We are working on techniques for
further improving the efficiency of southbound API calls.

We also evaluate how NF performance is impacted by the ex-
ecution of southbound operations. In particular, we meaauer-
age per-packet processing latency (including queueing)titaring
normal NF operation and when an NF is executigga Per f | ow
call. Among the NFs, the PRADS asset monitor has the largést r
ative increase—5.8% (0.120ms vs. 0.127ms), while the Bi® ID
has the largest absolute increase—0.12ms (6.93ms vs. $)06m
both cases, the impact is minimal, implying that southbooipelr-
ations do not significantly degrade NF performance.

8.2.2 NF Changes

To quantify the NF modifications required to support our keut
bound API, we counted the lines of code (LOC) that we added to
each NF (Table 3). The counts do not include the shared ¥ibrar
used with each NF for communication with the controller2.6K
LOC. At most, there is a 9.8% increase in LE@nost of which is
state serialization code that could be automatically geedr[4].
Thus, the NF changes required to support OpenNF are minimal.

8.3 Controller Scalability

Since the controller executes all northbound operatioB} (&
ability to scale is crucial. We thus measure the performamgact
of conducting simultaneous operations across many pas-ef

To isolate the controller from the performance of indivibdN&s,
we use “dummy” NFs that replay traces of past state in resgpons
to get Per f | ow, simply consume state fgyut Per f | ow, and
infinitely generate events during the lifetime of the exmant.

0@ (1000 flows -
£ 51250 2000 flows o
= @ 1000 3000 flows -]
98 750 e
5 E 500
Z8 250
0 e
0 4 8 12 16 20

Number of simultaneous moves
Figure 14: Performance of concurrent loss-freeTbv e operations

age time per operation increases linearly with both the rarmob
simultaneous operations and the number of flows affected.

We profiled our controller using HPROF [9] and found that Hu®
are busy reading from sockets most of the time. This bottlene
can be overcome by optimizing the size of state transfensgusi
compression. We ran a simple experiment and observed tirat, f
anove operation for 500 flows, state can be compressed by 38%
improving execution latency from 110ms to 70ms.

8.4 Prior NF Control Planes

Lastly, we compare the ability to satisfy the objectivesroétas-
tic/load balanced network monitoring application usinge®NF
versus existing approaches [6, 20, 24, 27, 33] (§2.2). Wewstth
one Bro IDS instanceRro;) and replay our data center traffic trace
at a rate of 2500 packets/sec for 2 minutes. We then doubtesthe
fic rate, add a second Bro IDS instandgr-), and rebalance all
HTTP flows toBro- (other flows remain aBro:); 2 minutes later
we scale back down to one instance.

VM Replication. This approach takes a snapshot of the current
state in an existing NF instanc&{o1) and copies it to a new in-
stance Broz) asis. Since, VM replication does not do fine-grained
state migration, we expect it to have unneeded states (ERa2)
instances. We quantify unneeded state by comparing: alsoiaps
of a VM running the Bro IDS that has not yet received any traf-
fic (basg, a snapshot taken at the instant of scale ful)(and
snhapshots of VMs that have only received either HTTP or other
traffic prior to scale upfTTPandother. Baseandfull differed by
22MB. HTTPandotherdiffered frombaseby 19MB and 4MB, re-
spectively; these numbers indicate the overhead impos#tehyn-
needed state at the two Bro IDS instances. In contrast, tloeiam

of state moved by OpenNF (i.e., per-flow and multi-flow state f
all active HTTP flows) was 8.1MB. More crucial are the cormests
implications of unneeded state: we found 3173 and 716 iacorr
entries in conn.log at the two Bro IDS instances, arisingbse the
migrated HTTP (other) flows terminate abruptly/to; (Bros).
Scaling Without Re-balancing Active Flows.Control planes that
steer only new flows to new scaled out NF instances leavemxist
flows to be handled by the same NF instance [24]. Thgise:
continues to remain bottlenecked until some of the flowsetising

it complete. Likewise, in the case of scale in, NFs are ursssndy
“held up” as long as flows are active. We observe th@%6 of the
HTTP flows in our cloud trace were longer than 25 minutes; this
requires us to wait for more than 25 minutes before we carysafe

The traces we use are derived from actual state and everits senterminateBroz, otherwise we may miss detecting some attacks.

by PRADS asset monitor while processing our cloud trafficera
All state and messages are small (202 bytes and 128 bytpsgcres
tively) for consistency, and to maximize the processing ateunat
the controller and minimize the impact due to network transf
Figure 14 shows the average time per loss-frege operation
as a function of the number of simultaneous operations. Vae a

9. CONCLUSION

Fully extracting the combined benefits of NFV and SDN reaaiire
a control plane to manage both network forwarding state ateal-i
nal NF state. Without such joint control, applications Wi forced
to make trade-offs among key objectives. Providing sucltrobis

3We do not calculate an increase for iptables because we wrotechallenging because we must address race conditions anchacc

a user-level tool to export/import state rather than madgythe
Linux kernel.

12

modate a variety of application objectives and NF types. Yée p
sented a novel control plane architecture called OpenNfattia

dresses these challenges through careful API design iefibimy
the ways NFs internally manage state today, and clever igobs

that ensure lock-step coordination of updates to NF and ar&tw

state. A thorough evaluation of OpenNF shows that: its joart-
trol is generally efficient even when applications haveaiarstrin-
gent requirements; OpenNF allows applications to makelsiait

choices in meeting their objectives; and NFs need modesigesa

and incur minimal overhead when supporting OpenNF primgtiv

10. ACKNOWLEDGEMENTS

We would like to thank Vivek Pai (our shepherd), Katerina Ar-
gyraki, Tom Anderson, David Cheriton, Vimalkumar Jeyakuma

Arvind Krishnamurthy, Ratul Mahajan, Jennifer Rexforddahe
anonymous reviewers for their insightful feedback. Thighkvis

supported in part by a Wisconsin Alumni Research Foundation

(WARF) Accelerator Award and National Science Foundati@nts

CNS-1302041, CNS-1314363 and CNS-1040757. Aaron Gember- 38l

Jacobson is supported by an IBM PhD Fellowship.

REFERENCES

Balancehtt p://inl ab. de/ bal ance. htni .

Boost C++ librariesht t p: / / boost . or g.

Bro 2.1 documentation: detect-mhr.bidt.t p: / / br 0. or g/ sphi nx- gi t/
scripts/policy/frameworks/fil es/detect-MHR bro. html .
C++ Middleware Writerht t p: / / webebenezer . net .

Check Point Software: ClusterXL.

ht t p: // checkpoi nt. contf product s/ cl usterxl| .

CRIU: Checkpoint/Restore In Userspabét p: // cri u. org.

Floodlight OpenFlow Controller.
http://floodlight.openflowhub. org.

HAProxy: The reliable, high performance TCP/HTTP loaddmncer.
http://haproxy. 1wt . eu/ .

HPROF.htt p: / / docs. or acl e. cont j avase/ 7/ docs/ t echnot es/
sanpl es/ hprof. htm .
iptableshttp://netfilter.org/projects/iptables.
libnetfilter_conntrack project.
http://netfilter.org/projects/libnetfilter_conntrack.
Malware-traffic-analysis.net.

http://mal ware-traffic-analysis.net.

nDPI.http://ntop. org/ product s/ ndpi .

Network functions virtualisation: Introductory wkipaper.
http://ww.tid. es/es/Docunent s/ NFV_\Wi te_Paper V2. pdf .
Passive Real-time Asset Detection System.

http://prads. projects.|inpro.no.

RiverBed Steelhead Load Balancing.

http://riverbed. con products- sol uti ons/ product s/ wan-
opti m zati on- st eel head/ wan- opti mi zati on- managenent .
Squid.ht t p: // squi d- cache. org.

A. Anand, V. Sekar, and A. Akella. SmartRE: An architeet for coordinated
network-wide redundancy elimination. 8iGCOMM 2009.

B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexfd slick control
plane for network middleboxes. HotSDN 2013.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisHa, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization 3OSP 2003.

T. Benson, A. Akella, and D. Maltz. Network Traffic Chataristics of Data
Centers in the Wild. IfMC, 2010.

S. K. Fayazbakhsh, L. Chaing, V. Sekar, M. Yu, and J. CgMoEnforcing
network-wide policies in the presence of dynamic middlehotions using
FlowTags. INNSDI, 2014.

A. Gember, R. Grandl, A. Anand, T. Benson, and A. AkeB&atos: Virtual
Middleboxes as First-Class Entities. Technical Report TR1 University of
Wisconsin-Madison, 2012.

A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X%0GA. Anand,

T. Benson, A. Akella, and V. Sekar. Stratos: A network-awanehestration
layer for middleboxes in the cloud. Technical Report ark805.0209, 2013.
K. He, L. Wang, A. Fisher, A. Gember, A. Akella, and T. Rispart. Next stop,
the cloud: Understanding modern web service deploymen€i2 &d Azure.
In IMC, 2013.

D. Joseph and I. Stoica. Modeling middleboX&EE Network 2008.

D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-awaseitching layer for
data centers. ISIGCOMM 2008.

R. Mahajan and R. Wattenhofer. On consistent updatssftware defined
networks. InHotNets 2013.

11.
[1]
[2]
[3]

4]
(5]

(6]
(7]

8

9]

[10
[11

[12]

[13
[14

[15

[16]

17
[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

13

[29] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,Btfulco, and

F. Huici. ClickOS and the art of network function virtualtmn. In NSD|, 2014.
N. McKeown, T. Anderson, H. Balakrishnan, G. ParulkarPeterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enablingvation in
campus networksACM SIGCOMM CCR38(2), 2008.

C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu. Evavihe internet with
connection acrobatics. HotMiddlebox 2013.

V. Paxson. Bro: a system for detecting network intrsdarreal-time. In
USENIX Security (SSYM)998.

Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M1.\SIMPLE-fying
middlebox policy enforcement using SDN. i GCOMM 2013.

S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Region: A high
availability framework for middleboxes. I80CC 2013.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. WarfiGglit/Merge:
System support for elastic execution in virtual middletzxa NSDI, 2013.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinged & Walker. Abstractions
for network update. I8SIGCOMM 2012.

37] M. Z. Shafiqg, L. Ji, A. X. Liu, J. Pang, and J. Wang. A firsbloat cellular
machine-to-machine traffic: Large scale measurement amdcterization. In
SIGMETRICS2012.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. RBsamy, and V. Sekar.
Making middleboxes someone else’s problem: Network prsingsas a cloud
service. INSIGCOMM 2012.

R. Wang, D. Butnariu, and J. Rexford. OpenFlow-basedesdoad balancing
gone wild. InHot-ICE, 2011.

[30]

[31]
[32]
[33]
[34]
[35]

[36]

[39]

APPENDIX

A. PROOF OF LOSS FREE AND ORDER-
PRESERVING

In this appendix, we prove that move is loss-free and order-p
serving. We first consider the mechanisms described in Barid
§5.1.2, and assume no loss or reordering occurs on netwtk.pa
We then relax these assumptions and consider the mechaaésms
scribed in §5.1.3.

A.1 No Loss or Reordering on Network Paths

Let p; be thei™ packet for a flowf that arrives aswand(p). ; be
the sequence of packets frarto j. Also, letS;; = ¢s,.., ((p)i;)
be the value of the per-flow state fprafter processingp); ; start-
ing from initial stateS;:.

The controller issues all southbound API calls and routeatgxl
so we can definitively order the actions in time:

t; Enable events and packet dropping fasn srcinst

to Get per-flow stateS from srcinst

ts Put per-flow stateS to dstinst

t
! to swto forward todstInst
Enable events and packet buffering foon dstinst
Change the route fof on swto forward tosrcinstand the
controller
t Change the route fgf on swto forward todstinst
ts Disable events and release packet bufferffon dstinst

ts
te

We use the time points to refer to the completion of each actio

from the perspective of the node on which the action is peréat.
Loss-free. Let pi, (1 < k < n) be the first packet fof to arrive
at swafter t;. Then,(p); ,— will be forwarded tosrcinst and
(p)&,» Will be forwarded todstinst

Of the packets forwarded trcinst let p; (1 < j < k) be the
first packet forf to be dequeued atcinstafter¢;. Then,(p) ;—:
will be processed asrcinstbeforet;, resulting in per-flow state
S1,—1. Incontrast(p); ,— will be sent to the controller in events
and dropped arcinst

Since no packets are processesralnstaftert; , the state5; ;—;
will be exported fromsrcinstat ¢, and imported ortstinstat ¢5.
Also, since no packets are forwardeddstinstbefore ¢;, there
won't be stateS to overwrite or combine during the importastinst

Extract packets from events buffered on controller and send

Events for(p);,x— may arrive at the controller anytime after.

If they arrive beford s, they are buffered. Starting &t, packets are
extracted from the buffered events and sersttto be forwarded to
dstinst If events fromsrcinstarrive at the controller after the buffer
is empty (i.e., aftert;), the packets they contain are immediately
sent toswto be forwarded talstinst Thus, allp; € (p);,x—: will

be forwarded talstinstand processed.

After t, (p)i,» Will arrive at dstinst They will be dequeued
and processed aftég. In summary,(p) ;—: will be processed
at srcinst with S;,;; as the initial per-flow state, angb); ., will
be processed atstinst with S; ;—; as the initial per-flow state,
implying move is loss-free.

Order-preserving. As above, letp, be the first packet fof to
arrive atswafter ¢, andp; be the first packet fof to be dequeued
atsrcinstafter¢;. Then,(p) ;—: will arrive and be processed at
srcinstin order beforet;. Similarly, (p)x,. will arrive (after t7)
and be processed (aftgy) at dstinstin order. To guarantee order-
preservingdstinstmust haveS; —; by ts. From above, we know
dstinstwill have S; ;—; by ts. Thus, we need to show thdstinst
will receive and procesép); »—; in order afterts but beforets.

Since,(p); k-1 is sent to a controller through a TCP channel, their

order is preserved at the controller.

Let p,, (j < m < k) be the first packet fof to arrive atsw
after ts. This impliessw forwards(p)., x—: to bothsrcinstand
the controller. The controller will remember the last padkethe
sequencepy—; .

Events for(p); m—: may arrive at the controller anytime after
t;. Events arriving beforés are buffered, while events arriving
after ¢, are handled immediately. The controller will extract the
packets from these events, mark the packets with a “do-uibéest)
flag, and send them tew to be forwarded talstinst They will
be processed aistinstas they arrive, resulting in per-flow state
S1,m—1 atdstinst

Since(p)m. x—: are not forwarded tsrcinstuntil after ¢5, the
controller will not receive events for these packets urtiérats.
The controller will extract, mark, and send these packetstimst
as above. Events are enableddstlnstat ¢5, sodstlinstwill raise
an event forp) m, k1.

Sincepy—; is the last packet the controller receives frem,
it knows p;,_; was the last packet forwarded secinst Further-
more, once the controller receives an eventgfpr; from dstinst
it knows dstinsthas processed; .—; and has the staté; ;.
Therefore, the controller can guarantee thsttnsthas states; ,—
by ts and move is order-preserving.

The proof can be extended to moves involving multi-flow state

by expanding the notion of flow to actually refer to a group ofi;
we omit this extension for brevity.

A.2 Lossy Network Paths

We now remove the assumptions that no loss occurs on network

paths and no reordering occurs on the path feymo dstinst we
still assume there is no reordering on the path fiewto srcinst

We use the same notation as above. In accordance with theamech

nisms described in 85.1.3, we modify the actions at timetgain
ts, andt; and add a time point as follows:

’

~

to dstinst
t; Do nothing
7, Change the route fgf on swto forward todstinst
t; 5 Send a tracer packet savto forward tosrcinst
Loss-free.The only change from above is the following:
Events for(p); »—; may arrive at the controller anytime after.
If they arrive beforets, they are buffered. Starting af, packets

14

, Extract packets from events buffered on controller and send

are extracted from the buffered events and sedstinst If events
from srcinstarrive at the controller after the buffer is empty (i.e.,
after ¢;), the packets they contain are immediately serdstnst
Since the control channel from the controllerdstinstis reliable,
all p; € (p);r—1 will arrive atdstinstand processed.
Order-preserving. As above,(p); ;—: will arrive and be pro-
cessed asrcinstin order beforet;. Similarly, (p)x,,, will arrive
(after t/) and be processed (aftey) at dstinstin order. We thus
need to show thadstinstwill receive and procesép); ,—; in or-
der afterts but beforets.

Events for(p), »—; may arrive at the controller anytime after.
Events arriving befores are buffered, while events arriving after
t; are handled immediately. The controller will extract thekets
from these events, mark the packets with a “do-not-buffead) fl
and send them tdstinst Since(p); »—; is sent to the controller
through a TCP channel and distinstthrough a TCP channel, the
order of packets within this sequence is preserved and ndhe w
be lost. The packets will be processeddatinstas they arrive,
resulting in per-flow staté’; ,_; atdstinst

Since a tracer packet is not senttwto be forwarded t@rcinst
until after ¢, no other packets fof will arrive at srcinstafter the
tracer packet (assuming no reordering occurs on the patin $vo
to srcins). Thus, all events frorsrcinstfor (p); »—; will arrive at
the controller before an event for the tracer packet. Funtbee, an
event for packepy_; (or an earlier packet ifp); x—: if pr—s is
dropped on the path froswto srcins) will be the last event to ar-
rive before an event for the tracer packet. This allows thrtrodler
to know thatp;,_ ; was the last packet forwardedseinst

Once the controller receives an event fqr ; from dstinst it
knowsdstlnsthas processeg ,—; and has the stat¢, ;_ ;. There-
fore, the controller can guarantee thistinsthas stateS; »—; by
ts and move is order-preserving.

